This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcsect.b | |- B = ( Base ` C ) |
|
| oppcsect.o | |- O = ( oppCat ` C ) |
||
| oppcsect.c | |- ( ph -> C e. Cat ) |
||
| oppcsect.x | |- ( ph -> X e. B ) |
||
| oppcsect.y | |- ( ph -> Y e. B ) |
||
| oppcsect.s | |- S = ( Sect ` C ) |
||
| oppcsect.t | |- T = ( Sect ` O ) |
||
| Assertion | oppcsect | |- ( ph -> ( F ( X T Y ) G <-> G ( X S Y ) F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcsect.b | |- B = ( Base ` C ) |
|
| 2 | oppcsect.o | |- O = ( oppCat ` C ) |
|
| 3 | oppcsect.c | |- ( ph -> C e. Cat ) |
|
| 4 | oppcsect.x | |- ( ph -> X e. B ) |
|
| 5 | oppcsect.y | |- ( ph -> Y e. B ) |
|
| 6 | oppcsect.s | |- S = ( Sect ` C ) |
|
| 7 | oppcsect.t | |- T = ( Sect ` O ) |
|
| 8 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 9 | 4 | adantr | |- ( ( ph /\ ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) ) -> X e. B ) |
| 10 | 5 | adantr | |- ( ( ph /\ ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) ) -> Y e. B ) |
| 11 | 1 8 2 9 10 9 | oppcco | |- ( ( ph /\ ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) ) -> ( G ( <. X , Y >. ( comp ` O ) X ) F ) = ( F ( <. X , Y >. ( comp ` C ) X ) G ) ) |
| 12 | 3 | adantr | |- ( ( ph /\ ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) ) -> C e. Cat ) |
| 13 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 14 | 2 13 | oppcid | |- ( C e. Cat -> ( Id ` O ) = ( Id ` C ) ) |
| 15 | 12 14 | syl | |- ( ( ph /\ ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) ) -> ( Id ` O ) = ( Id ` C ) ) |
| 16 | 15 | fveq1d | |- ( ( ph /\ ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) ) -> ( ( Id ` O ) ` X ) = ( ( Id ` C ) ` X ) ) |
| 17 | 11 16 | eqeq12d | |- ( ( ph /\ ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) ) -> ( ( G ( <. X , Y >. ( comp ` O ) X ) F ) = ( ( Id ` O ) ` X ) <-> ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) |
| 18 | 17 | pm5.32da | |- ( ph -> ( ( ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) /\ ( G ( <. X , Y >. ( comp ` O ) X ) F ) = ( ( Id ` O ) ` X ) ) <-> ( ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) ) |
| 19 | df-3an | |- ( ( F e. ( X ( Hom ` O ) Y ) /\ G e. ( Y ( Hom ` O ) X ) /\ ( G ( <. X , Y >. ( comp ` O ) X ) F ) = ( ( Id ` O ) ` X ) ) <-> ( ( F e. ( X ( Hom ` O ) Y ) /\ G e. ( Y ( Hom ` O ) X ) ) /\ ( G ( <. X , Y >. ( comp ` O ) X ) F ) = ( ( Id ` O ) ` X ) ) ) |
|
| 20 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 21 | 20 2 | oppchom | |- ( X ( Hom ` O ) Y ) = ( Y ( Hom ` C ) X ) |
| 22 | 21 | eleq2i | |- ( F e. ( X ( Hom ` O ) Y ) <-> F e. ( Y ( Hom ` C ) X ) ) |
| 23 | 20 2 | oppchom | |- ( Y ( Hom ` O ) X ) = ( X ( Hom ` C ) Y ) |
| 24 | 23 | eleq2i | |- ( G e. ( Y ( Hom ` O ) X ) <-> G e. ( X ( Hom ` C ) Y ) ) |
| 25 | 22 24 | anbi12ci | |- ( ( F e. ( X ( Hom ` O ) Y ) /\ G e. ( Y ( Hom ` O ) X ) ) <-> ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) ) |
| 26 | 25 | anbi1i | |- ( ( ( F e. ( X ( Hom ` O ) Y ) /\ G e. ( Y ( Hom ` O ) X ) ) /\ ( G ( <. X , Y >. ( comp ` O ) X ) F ) = ( ( Id ` O ) ` X ) ) <-> ( ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) /\ ( G ( <. X , Y >. ( comp ` O ) X ) F ) = ( ( Id ` O ) ` X ) ) ) |
| 27 | 19 26 | bitri | |- ( ( F e. ( X ( Hom ` O ) Y ) /\ G e. ( Y ( Hom ` O ) X ) /\ ( G ( <. X , Y >. ( comp ` O ) X ) F ) = ( ( Id ` O ) ` X ) ) <-> ( ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) /\ ( G ( <. X , Y >. ( comp ` O ) X ) F ) = ( ( Id ` O ) ` X ) ) ) |
| 28 | df-3an | |- ( ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) <-> ( ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) |
|
| 29 | 18 27 28 | 3bitr4g | |- ( ph -> ( ( F e. ( X ( Hom ` O ) Y ) /\ G e. ( Y ( Hom ` O ) X ) /\ ( G ( <. X , Y >. ( comp ` O ) X ) F ) = ( ( Id ` O ) ` X ) ) <-> ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) ) |
| 30 | 2 1 | oppcbas | |- B = ( Base ` O ) |
| 31 | eqid | |- ( Hom ` O ) = ( Hom ` O ) |
|
| 32 | eqid | |- ( comp ` O ) = ( comp ` O ) |
|
| 33 | eqid | |- ( Id ` O ) = ( Id ` O ) |
|
| 34 | 2 | oppccat | |- ( C e. Cat -> O e. Cat ) |
| 35 | 3 34 | syl | |- ( ph -> O e. Cat ) |
| 36 | 30 31 32 33 7 35 4 5 | issect | |- ( ph -> ( F ( X T Y ) G <-> ( F e. ( X ( Hom ` O ) Y ) /\ G e. ( Y ( Hom ` O ) X ) /\ ( G ( <. X , Y >. ( comp ` O ) X ) F ) = ( ( Id ` O ) ` X ) ) ) ) |
| 37 | 1 20 8 13 6 3 4 5 | issect | |- ( ph -> ( G ( X S Y ) F <-> ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) ) |
| 38 | 29 36 37 | 3bitr4d | |- ( ph -> ( F ( X T Y ) G <-> G ( X S Y ) F ) ) |