This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcmon.o | |- O = ( oppCat ` C ) |
|
| oppcmon.c | |- ( ph -> C e. Cat ) |
||
| oppcmon.m | |- M = ( Mono ` O ) |
||
| oppcmon.e | |- E = ( Epi ` C ) |
||
| Assertion | oppcmon | |- ( ph -> ( X M Y ) = ( Y E X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcmon.o | |- O = ( oppCat ` C ) |
|
| 2 | oppcmon.c | |- ( ph -> C e. Cat ) |
|
| 3 | oppcmon.m | |- M = ( Mono ` O ) |
|
| 4 | oppcmon.e | |- E = ( Epi ` C ) |
|
| 5 | fveq2 | |- ( c = C -> ( oppCat ` c ) = ( oppCat ` C ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( c = C -> ( oppCat ` c ) = O ) |
| 7 | 6 | fveq2d | |- ( c = C -> ( Mono ` ( oppCat ` c ) ) = ( Mono ` O ) ) |
| 8 | 7 3 | eqtr4di | |- ( c = C -> ( Mono ` ( oppCat ` c ) ) = M ) |
| 9 | 8 | tposeqd | |- ( c = C -> tpos ( Mono ` ( oppCat ` c ) ) = tpos M ) |
| 10 | df-epi | |- Epi = ( c e. Cat |-> tpos ( Mono ` ( oppCat ` c ) ) ) |
|
| 11 | 3 | fvexi | |- M e. _V |
| 12 | 11 | tposex | |- tpos M e. _V |
| 13 | 9 10 12 | fvmpt | |- ( C e. Cat -> ( Epi ` C ) = tpos M ) |
| 14 | 2 13 | syl | |- ( ph -> ( Epi ` C ) = tpos M ) |
| 15 | 4 14 | eqtrid | |- ( ph -> E = tpos M ) |
| 16 | 15 | oveqd | |- ( ph -> ( Y E X ) = ( Y tpos M X ) ) |
| 17 | ovtpos | |- ( Y tpos M X ) = ( X M Y ) |
|
| 18 | 16 17 | eqtr2di | |- ( ph -> ( X M Y ) = ( Y E X ) ) |