This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity is a section of itself. (Contributed by AV, 8-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invid.b | |- B = ( Base ` C ) |
|
| invid.i | |- I = ( Id ` C ) |
||
| invid.c | |- ( ph -> C e. Cat ) |
||
| invid.x | |- ( ph -> X e. B ) |
||
| Assertion | sectid | |- ( ph -> ( I ` X ) ( X ( Sect ` C ) X ) ( I ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invid.b | |- B = ( Base ` C ) |
|
| 2 | invid.i | |- I = ( Id ` C ) |
|
| 3 | invid.c | |- ( ph -> C e. Cat ) |
|
| 4 | invid.x | |- ( ph -> X e. B ) |
|
| 5 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 6 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 7 | 1 5 2 3 4 | catidcl | |- ( ph -> ( I ` X ) e. ( X ( Hom ` C ) X ) ) |
| 8 | 1 5 2 3 4 6 4 7 | catlid | |- ( ph -> ( ( I ` X ) ( <. X , X >. ( comp ` C ) X ) ( I ` X ) ) = ( I ` X ) ) |
| 9 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 10 | 1 5 6 2 9 3 4 4 7 7 | issect2 | |- ( ph -> ( ( I ` X ) ( X ( Sect ` C ) X ) ( I ` X ) <-> ( ( I ` X ) ( <. X , X >. ( comp ` C ) X ) ( I ` X ) ) = ( I ` X ) ) ) |
| 11 | 8 10 | mpbird | |- ( ph -> ( I ` X ) ( X ( Sect ` C ) X ) ( I ` X ) ) |