This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin2i | |- ( ( ( A e. Fin2 /\ B C_ ~P A ) /\ ( B =/= (/) /\ [C.] Or B ) ) -> U. B e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 | |- ( y = B -> ( y =/= (/) <-> B =/= (/) ) ) |
|
| 2 | soeq2 | |- ( y = B -> ( [C.] Or y <-> [C.] Or B ) ) |
|
| 3 | 1 2 | anbi12d | |- ( y = B -> ( ( y =/= (/) /\ [C.] Or y ) <-> ( B =/= (/) /\ [C.] Or B ) ) ) |
| 4 | unieq | |- ( y = B -> U. y = U. B ) |
|
| 5 | id | |- ( y = B -> y = B ) |
|
| 6 | 4 5 | eleq12d | |- ( y = B -> ( U. y e. y <-> U. B e. B ) ) |
| 7 | 3 6 | imbi12d | |- ( y = B -> ( ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y ) <-> ( ( B =/= (/) /\ [C.] Or B ) -> U. B e. B ) ) ) |
| 8 | isfin2 | |- ( A e. Fin2 -> ( A e. Fin2 <-> A. y e. ~P ~P A ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y ) ) ) |
|
| 9 | 8 | ibi | |- ( A e. Fin2 -> A. y e. ~P ~P A ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y ) ) |
| 10 | 9 | adantr | |- ( ( A e. Fin2 /\ B C_ ~P A ) -> A. y e. ~P ~P A ( ( y =/= (/) /\ [C.] Or y ) -> U. y e. y ) ) |
| 11 | pwexg | |- ( A e. Fin2 -> ~P A e. _V ) |
|
| 12 | elpw2g | |- ( ~P A e. _V -> ( B e. ~P ~P A <-> B C_ ~P A ) ) |
|
| 13 | 11 12 | syl | |- ( A e. Fin2 -> ( B e. ~P ~P A <-> B C_ ~P A ) ) |
| 14 | 13 | biimpar | |- ( ( A e. Fin2 /\ B C_ ~P A ) -> B e. ~P ~P A ) |
| 15 | 7 10 14 | rspcdva | |- ( ( A e. Fin2 /\ B C_ ~P A ) -> ( ( B =/= (/) /\ [C.] Or B ) -> U. B e. B ) ) |
| 16 | 15 | imp | |- ( ( ( A e. Fin2 /\ B C_ ~P A ) /\ ( B =/= (/) /\ [C.] Or B ) ) -> U. B e. B ) |