This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . In a class of ordinals, each element is fully identified by those of its predecessors which also belong to the class. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin23lem24 | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> ( ( C i^i B ) = ( D i^i B ) <-> C = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> Ord A ) |
|
| 2 | simplr | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> B C_ A ) |
|
| 3 | simprl | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> C e. B ) |
|
| 4 | 2 3 | sseldd | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> C e. A ) |
| 5 | ordelord | |- ( ( Ord A /\ C e. A ) -> Ord C ) |
|
| 6 | 1 4 5 | syl2anc | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> Ord C ) |
| 7 | simprr | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> D e. B ) |
|
| 8 | 2 7 | sseldd | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> D e. A ) |
| 9 | ordelord | |- ( ( Ord A /\ D e. A ) -> Ord D ) |
|
| 10 | 1 8 9 | syl2anc | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> Ord D ) |
| 11 | ordtri3 | |- ( ( Ord C /\ Ord D ) -> ( C = D <-> -. ( C e. D \/ D e. C ) ) ) |
|
| 12 | 11 | necon2abid | |- ( ( Ord C /\ Ord D ) -> ( ( C e. D \/ D e. C ) <-> C =/= D ) ) |
| 13 | 6 10 12 | syl2anc | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> ( ( C e. D \/ D e. C ) <-> C =/= D ) ) |
| 14 | simpr | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ C e. D ) -> C e. D ) |
|
| 15 | simplrl | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ C e. D ) -> C e. B ) |
|
| 16 | 14 15 | elind | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ C e. D ) -> C e. ( D i^i B ) ) |
| 17 | 6 | adantr | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ C e. D ) -> Ord C ) |
| 18 | ordirr | |- ( Ord C -> -. C e. C ) |
|
| 19 | 17 18 | syl | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ C e. D ) -> -. C e. C ) |
| 20 | elinel1 | |- ( C e. ( C i^i B ) -> C e. C ) |
|
| 21 | 19 20 | nsyl | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ C e. D ) -> -. C e. ( C i^i B ) ) |
| 22 | nelne1 | |- ( ( C e. ( D i^i B ) /\ -. C e. ( C i^i B ) ) -> ( D i^i B ) =/= ( C i^i B ) ) |
|
| 23 | 16 21 22 | syl2anc | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ C e. D ) -> ( D i^i B ) =/= ( C i^i B ) ) |
| 24 | 23 | necomd | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ C e. D ) -> ( C i^i B ) =/= ( D i^i B ) ) |
| 25 | simpr | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ D e. C ) -> D e. C ) |
|
| 26 | simplrr | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ D e. C ) -> D e. B ) |
|
| 27 | 25 26 | elind | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ D e. C ) -> D e. ( C i^i B ) ) |
| 28 | 10 | adantr | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ D e. C ) -> Ord D ) |
| 29 | ordirr | |- ( Ord D -> -. D e. D ) |
|
| 30 | 28 29 | syl | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ D e. C ) -> -. D e. D ) |
| 31 | elinel1 | |- ( D e. ( D i^i B ) -> D e. D ) |
|
| 32 | 30 31 | nsyl | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ D e. C ) -> -. D e. ( D i^i B ) ) |
| 33 | nelne1 | |- ( ( D e. ( C i^i B ) /\ -. D e. ( D i^i B ) ) -> ( C i^i B ) =/= ( D i^i B ) ) |
|
| 34 | 27 32 33 | syl2anc | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ D e. C ) -> ( C i^i B ) =/= ( D i^i B ) ) |
| 35 | 24 34 | jaodan | |- ( ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) /\ ( C e. D \/ D e. C ) ) -> ( C i^i B ) =/= ( D i^i B ) ) |
| 36 | 35 | ex | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> ( ( C e. D \/ D e. C ) -> ( C i^i B ) =/= ( D i^i B ) ) ) |
| 37 | 13 36 | sylbird | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> ( C =/= D -> ( C i^i B ) =/= ( D i^i B ) ) ) |
| 38 | 37 | necon4d | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> ( ( C i^i B ) = ( D i^i B ) -> C = D ) ) |
| 39 | ineq1 | |- ( C = D -> ( C i^i B ) = ( D i^i B ) ) |
|
| 40 | 38 39 | impbid1 | |- ( ( ( Ord A /\ B C_ A ) /\ ( C e. B /\ D e. B ) ) -> ( ( C i^i B ) = ( D i^i B ) <-> C = D ) ) |