This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sorpss | |- ( [C.] Or A <-> A. x e. A A. y e. A ( x C_ y \/ y C_ x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | porpss | |- [C.] Po A |
|
| 2 | 1 | biantrur | |- ( A. x e. A A. y e. A ( x [C.] y \/ x = y \/ y [C.] x ) <-> ( [C.] Po A /\ A. x e. A A. y e. A ( x [C.] y \/ x = y \/ y [C.] x ) ) ) |
| 3 | sspsstri | |- ( ( x C_ y \/ y C_ x ) <-> ( x C. y \/ x = y \/ y C. x ) ) |
|
| 4 | vex | |- y e. _V |
|
| 5 | 4 | brrpss | |- ( x [C.] y <-> x C. y ) |
| 6 | biid | |- ( x = y <-> x = y ) |
|
| 7 | vex | |- x e. _V |
|
| 8 | 7 | brrpss | |- ( y [C.] x <-> y C. x ) |
| 9 | 5 6 8 | 3orbi123i | |- ( ( x [C.] y \/ x = y \/ y [C.] x ) <-> ( x C. y \/ x = y \/ y C. x ) ) |
| 10 | 3 9 | bitr4i | |- ( ( x C_ y \/ y C_ x ) <-> ( x [C.] y \/ x = y \/ y [C.] x ) ) |
| 11 | 10 | 2ralbii | |- ( A. x e. A A. y e. A ( x C_ y \/ y C_ x ) <-> A. x e. A A. y e. A ( x [C.] y \/ x = y \/ y [C.] x ) ) |
| 12 | df-so | |- ( [C.] Or A <-> ( [C.] Po A /\ A. x e. A A. y e. A ( x [C.] y \/ x = y \/ y [C.] x ) ) ) |
|
| 13 | 2 11 12 | 3bitr4ri | |- ( [C.] Or A <-> A. x e. A A. y e. A ( x C_ y \/ y C_ x ) ) |