This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a function. Definition 6.4(4) of TakeutiZaring p. 24. (Contributed by NM, 29-Dec-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffun4 | |- ( Fun A <-> ( Rel A /\ A. x A. y A. z ( ( <. x , y >. e. A /\ <. x , z >. e. A ) -> y = z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun2 | |- ( Fun A <-> ( Rel A /\ A. x A. y A. z ( ( x A y /\ x A z ) -> y = z ) ) ) |
|
| 2 | df-br | |- ( x A y <-> <. x , y >. e. A ) |
|
| 3 | df-br | |- ( x A z <-> <. x , z >. e. A ) |
|
| 4 | 2 3 | anbi12i | |- ( ( x A y /\ x A z ) <-> ( <. x , y >. e. A /\ <. x , z >. e. A ) ) |
| 5 | 4 | imbi1i | |- ( ( ( x A y /\ x A z ) -> y = z ) <-> ( ( <. x , y >. e. A /\ <. x , z >. e. A ) -> y = z ) ) |
| 6 | 5 | albii | |- ( A. z ( ( x A y /\ x A z ) -> y = z ) <-> A. z ( ( <. x , y >. e. A /\ <. x , z >. e. A ) -> y = z ) ) |
| 7 | 6 | 2albii | |- ( A. x A. y A. z ( ( x A y /\ x A z ) -> y = z ) <-> A. x A. y A. z ( ( <. x , y >. e. A /\ <. x , z >. e. A ) -> y = z ) ) |
| 8 | 7 | anbi2i | |- ( ( Rel A /\ A. x A. y A. z ( ( x A y /\ x A z ) -> y = z ) ) <-> ( Rel A /\ A. x A. y A. z ( ( <. x , y >. e. A /\ <. x , z >. e. A ) -> y = z ) ) ) |
| 9 | 1 8 | bitri | |- ( Fun A <-> ( Rel A /\ A. x A. y A. z ( ( <. x , y >. e. A /\ <. x , z >. e. A ) -> y = z ) ) ) |