This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coep.1 | |- A e. _V |
|
| coep.2 | |- B e. _V |
||
| Assertion | coepr | |- ( A ( R o. `' _E ) B <-> E. x e. A x R B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coep.1 | |- A e. _V |
|
| 2 | coep.2 | |- B e. _V |
|
| 3 | vex | |- x e. _V |
|
| 4 | 1 3 | brcnv | |- ( A `' _E x <-> x _E A ) |
| 5 | 1 | epeli | |- ( x _E A <-> x e. A ) |
| 6 | 4 5 | bitri | |- ( A `' _E x <-> x e. A ) |
| 7 | 6 | anbi1i | |- ( ( A `' _E x /\ x R B ) <-> ( x e. A /\ x R B ) ) |
| 8 | 7 | exbii | |- ( E. x ( A `' _E x /\ x R B ) <-> E. x ( x e. A /\ x R B ) ) |
| 9 | 1 2 | brco | |- ( A ( R o. `' _E ) B <-> E. x ( A `' _E x /\ x R B ) ) |
| 10 | df-rex | |- ( E. x e. A x R B <-> E. x ( x e. A /\ x R B ) ) |
|
| 11 | 8 9 10 | 3bitr4i | |- ( A ( R o. `' _E ) B <-> E. x e. A x R B ) |