This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize a ternary relation over a tail Cartesian product. Together with txpss3v , this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brtxp.1 | |- X e. _V |
|
| brtxp.2 | |- Y e. _V |
||
| brtxp.3 | |- Z e. _V |
||
| Assertion | brtxp | |- ( X ( A (x) B ) <. Y , Z >. <-> ( X A Y /\ X B Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtxp.1 | |- X e. _V |
|
| 2 | brtxp.2 | |- Y e. _V |
|
| 3 | brtxp.3 | |- Z e. _V |
|
| 4 | df-txp | |- ( A (x) B ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. A ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. B ) ) |
|
| 5 | 4 | breqi | |- ( X ( A (x) B ) <. Y , Z >. <-> X ( ( `' ( 1st |` ( _V X. _V ) ) o. A ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. B ) ) <. Y , Z >. ) |
| 6 | brin | |- ( X ( ( `' ( 1st |` ( _V X. _V ) ) o. A ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. B ) ) <. Y , Z >. <-> ( X ( `' ( 1st |` ( _V X. _V ) ) o. A ) <. Y , Z >. /\ X ( `' ( 2nd |` ( _V X. _V ) ) o. B ) <. Y , Z >. ) ) |
|
| 7 | opex | |- <. Y , Z >. e. _V |
|
| 8 | 1 7 | brco | |- ( X ( `' ( 1st |` ( _V X. _V ) ) o. A ) <. Y , Z >. <-> E. y ( X A y /\ y `' ( 1st |` ( _V X. _V ) ) <. Y , Z >. ) ) |
| 9 | vex | |- y e. _V |
|
| 10 | 9 7 | brcnv | |- ( y `' ( 1st |` ( _V X. _V ) ) <. Y , Z >. <-> <. Y , Z >. ( 1st |` ( _V X. _V ) ) y ) |
| 11 | 2 3 | opelvv | |- <. Y , Z >. e. ( _V X. _V ) |
| 12 | 9 | brresi | |- ( <. Y , Z >. ( 1st |` ( _V X. _V ) ) y <-> ( <. Y , Z >. e. ( _V X. _V ) /\ <. Y , Z >. 1st y ) ) |
| 13 | 11 12 | mpbiran | |- ( <. Y , Z >. ( 1st |` ( _V X. _V ) ) y <-> <. Y , Z >. 1st y ) |
| 14 | 2 3 | br1steq | |- ( <. Y , Z >. 1st y <-> y = Y ) |
| 15 | 10 13 14 | 3bitri | |- ( y `' ( 1st |` ( _V X. _V ) ) <. Y , Z >. <-> y = Y ) |
| 16 | 15 | anbi1ci | |- ( ( X A y /\ y `' ( 1st |` ( _V X. _V ) ) <. Y , Z >. ) <-> ( y = Y /\ X A y ) ) |
| 17 | 16 | exbii | |- ( E. y ( X A y /\ y `' ( 1st |` ( _V X. _V ) ) <. Y , Z >. ) <-> E. y ( y = Y /\ X A y ) ) |
| 18 | breq2 | |- ( y = Y -> ( X A y <-> X A Y ) ) |
|
| 19 | 2 18 | ceqsexv | |- ( E. y ( y = Y /\ X A y ) <-> X A Y ) |
| 20 | 8 17 19 | 3bitri | |- ( X ( `' ( 1st |` ( _V X. _V ) ) o. A ) <. Y , Z >. <-> X A Y ) |
| 21 | 1 7 | brco | |- ( X ( `' ( 2nd |` ( _V X. _V ) ) o. B ) <. Y , Z >. <-> E. z ( X B z /\ z `' ( 2nd |` ( _V X. _V ) ) <. Y , Z >. ) ) |
| 22 | vex | |- z e. _V |
|
| 23 | 22 7 | brcnv | |- ( z `' ( 2nd |` ( _V X. _V ) ) <. Y , Z >. <-> <. Y , Z >. ( 2nd |` ( _V X. _V ) ) z ) |
| 24 | 22 | brresi | |- ( <. Y , Z >. ( 2nd |` ( _V X. _V ) ) z <-> ( <. Y , Z >. e. ( _V X. _V ) /\ <. Y , Z >. 2nd z ) ) |
| 25 | 11 24 | mpbiran | |- ( <. Y , Z >. ( 2nd |` ( _V X. _V ) ) z <-> <. Y , Z >. 2nd z ) |
| 26 | 2 3 | br2ndeq | |- ( <. Y , Z >. 2nd z <-> z = Z ) |
| 27 | 23 25 26 | 3bitri | |- ( z `' ( 2nd |` ( _V X. _V ) ) <. Y , Z >. <-> z = Z ) |
| 28 | 27 | anbi1ci | |- ( ( X B z /\ z `' ( 2nd |` ( _V X. _V ) ) <. Y , Z >. ) <-> ( z = Z /\ X B z ) ) |
| 29 | 28 | exbii | |- ( E. z ( X B z /\ z `' ( 2nd |` ( _V X. _V ) ) <. Y , Z >. ) <-> E. z ( z = Z /\ X B z ) ) |
| 30 | breq2 | |- ( z = Z -> ( X B z <-> X B Z ) ) |
|
| 31 | 3 30 | ceqsexv | |- ( E. z ( z = Z /\ X B z ) <-> X B Z ) |
| 32 | 21 29 31 | 3bitri | |- ( X ( `' ( 2nd |` ( _V X. _V ) ) o. B ) <. Y , Z >. <-> X B Z ) |
| 33 | 20 32 | anbi12i | |- ( ( X ( `' ( 1st |` ( _V X. _V ) ) o. A ) <. Y , Z >. /\ X ( `' ( 2nd |` ( _V X. _V ) ) o. B ) <. Y , Z >. ) <-> ( X A Y /\ X B Z ) ) |
| 34 | 5 6 33 | 3bitri | |- ( X ( A (x) B ) <. Y , Z >. <-> ( X A Y /\ X B Z ) ) |