This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute two pairs of existential quantifiers over a conjunction. For a version requiring fewer axioms but with additional disjoint variable conditions, see 4exdistrv . (Contributed by NM, 31-Jul-1995) Remove disjoint variable conditions on y , z and x , w . (Revised by Eric Schmidt, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ee4anv | |- ( E. x E. y E. z E. w ( ph /\ ps ) <-> ( E. x E. y ph /\ E. z E. w ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom | |- ( E. y E. z E. w ( ph /\ ps ) <-> E. z E. y E. w ( ph /\ ps ) ) |
|
| 2 | 1 | exbii | |- ( E. x E. y E. z E. w ( ph /\ ps ) <-> E. x E. z E. y E. w ( ph /\ ps ) ) |
| 3 | eeanv | |- ( E. y E. w ( ph /\ ps ) <-> ( E. y ph /\ E. w ps ) ) |
|
| 4 | 3 | 2exbii | |- ( E. x E. z E. y E. w ( ph /\ ps ) <-> E. x E. z ( E. y ph /\ E. w ps ) ) |
| 5 | nfv | |- F/ z ph |
|
| 6 | 5 | nfex | |- F/ z E. y ph |
| 7 | nfv | |- F/ x ps |
|
| 8 | 7 | nfex | |- F/ x E. w ps |
| 9 | 6 8 | eean | |- ( E. x E. z ( E. y ph /\ E. w ps ) <-> ( E. x E. y ph /\ E. z E. w ps ) ) |
| 10 | 2 4 9 | 3bitri | |- ( E. x E. y E. z E. w ( ph /\ ps ) <-> ( E. x E. y ph /\ E. z E. w ps ) ) |