This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elfix.1 | |- A e. _V |
|
| Assertion | elfix | |- ( A e. Fix R <-> A R A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfix.1 | |- A e. _V |
|
| 2 | df-fix | |- Fix R = dom ( R i^i _I ) |
|
| 3 | 2 | eleq2i | |- ( A e. Fix R <-> A e. dom ( R i^i _I ) ) |
| 4 | 1 | eldm | |- ( A e. dom ( R i^i _I ) <-> E. x A ( R i^i _I ) x ) |
| 5 | brin | |- ( A ( R i^i _I ) x <-> ( A R x /\ A _I x ) ) |
|
| 6 | ancom | |- ( ( A R x /\ A _I x ) <-> ( A _I x /\ A R x ) ) |
|
| 7 | vex | |- x e. _V |
|
| 8 | 7 | ideq | |- ( A _I x <-> A = x ) |
| 9 | eqcom | |- ( A = x <-> x = A ) |
|
| 10 | 8 9 | bitri | |- ( A _I x <-> x = A ) |
| 11 | 10 | anbi1i | |- ( ( A _I x /\ A R x ) <-> ( x = A /\ A R x ) ) |
| 12 | 5 6 11 | 3bitri | |- ( A ( R i^i _I ) x <-> ( x = A /\ A R x ) ) |
| 13 | 12 | exbii | |- ( E. x A ( R i^i _I ) x <-> E. x ( x = A /\ A R x ) ) |
| 14 | 4 13 | bitri | |- ( A e. dom ( R i^i _I ) <-> E. x ( x = A /\ A R x ) ) |
| 15 | breq2 | |- ( x = A -> ( A R x <-> A R A ) ) |
|
| 16 | 1 15 | ceqsexv | |- ( E. x ( x = A /\ A R x ) <-> A R A ) |
| 17 | 3 14 16 | 3bitri | |- ( A e. Fix R <-> A R A ) |