This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If K is an integer, then the exponential of 2 Kpi i is 1 . (Contributed by Mario Carneiro, 9-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ef2kpi | |- ( K e. ZZ -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. K ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | 2cn | |- 2 e. CC |
|
| 3 | picn | |- _pi e. CC |
|
| 4 | 2 3 | mulcli | |- ( 2 x. _pi ) e. CC |
| 5 | 1 4 | mulcli | |- ( _i x. ( 2 x. _pi ) ) e. CC |
| 6 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 7 | mulcom | |- ( ( ( _i x. ( 2 x. _pi ) ) e. CC /\ K e. CC ) -> ( ( _i x. ( 2 x. _pi ) ) x. K ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
|
| 8 | 5 6 7 | sylancr | |- ( K e. ZZ -> ( ( _i x. ( 2 x. _pi ) ) x. K ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
| 9 | 8 | fveq2d | |- ( K e. ZZ -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. K ) ) = ( exp ` ( K x. ( _i x. ( 2 x. _pi ) ) ) ) ) |
| 10 | efexp | |- ( ( ( _i x. ( 2 x. _pi ) ) e. CC /\ K e. ZZ ) -> ( exp ` ( K x. ( _i x. ( 2 x. _pi ) ) ) ) = ( ( exp ` ( _i x. ( 2 x. _pi ) ) ) ^ K ) ) |
|
| 11 | 5 10 | mpan | |- ( K e. ZZ -> ( exp ` ( K x. ( _i x. ( 2 x. _pi ) ) ) ) = ( ( exp ` ( _i x. ( 2 x. _pi ) ) ) ^ K ) ) |
| 12 | ef2pi | |- ( exp ` ( _i x. ( 2 x. _pi ) ) ) = 1 |
|
| 13 | 12 | oveq1i | |- ( ( exp ` ( _i x. ( 2 x. _pi ) ) ) ^ K ) = ( 1 ^ K ) |
| 14 | 1exp | |- ( K e. ZZ -> ( 1 ^ K ) = 1 ) |
|
| 15 | 13 14 | eqtrid | |- ( K e. ZZ -> ( ( exp ` ( _i x. ( 2 x. _pi ) ) ) ^ K ) = 1 ) |
| 16 | 9 11 15 | 3eqtrd | |- ( K e. ZZ -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. K ) ) = 1 ) |