This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efi4p.1 | |- F = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
|
| Assertion | efi4p | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efi4p.1 | |- F = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 4 | 2 3 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 5 | 1 | ef4p | |- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
| 6 | 4 5 | syl | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | addcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
|
| 9 | 7 4 8 | sylancr | |- ( A e. CC -> ( 1 + ( _i x. A ) ) e. CC ) |
| 10 | 4 | sqcld | |- ( A e. CC -> ( ( _i x. A ) ^ 2 ) e. CC ) |
| 11 | 10 | halfcld | |- ( A e. CC -> ( ( ( _i x. A ) ^ 2 ) / 2 ) e. CC ) |
| 12 | 3nn0 | |- 3 e. NN0 |
|
| 13 | expcl | |- ( ( ( _i x. A ) e. CC /\ 3 e. NN0 ) -> ( ( _i x. A ) ^ 3 ) e. CC ) |
|
| 14 | 4 12 13 | sylancl | |- ( A e. CC -> ( ( _i x. A ) ^ 3 ) e. CC ) |
| 15 | 6cn | |- 6 e. CC |
|
| 16 | 6re | |- 6 e. RR |
|
| 17 | 6pos | |- 0 < 6 |
|
| 18 | 16 17 | gt0ne0ii | |- 6 =/= 0 |
| 19 | divcl | |- ( ( ( ( _i x. A ) ^ 3 ) e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( ( ( _i x. A ) ^ 3 ) / 6 ) e. CC ) |
|
| 20 | 15 18 19 | mp3an23 | |- ( ( ( _i x. A ) ^ 3 ) e. CC -> ( ( ( _i x. A ) ^ 3 ) / 6 ) e. CC ) |
| 21 | 14 20 | syl | |- ( A e. CC -> ( ( ( _i x. A ) ^ 3 ) / 6 ) e. CC ) |
| 22 | 9 11 21 | addassd | |- ( A e. CC -> ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) = ( ( 1 + ( _i x. A ) ) + ( ( ( ( _i x. A ) ^ 2 ) / 2 ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) ) ) |
| 23 | 7 | a1i | |- ( A e. CC -> 1 e. CC ) |
| 24 | 23 4 11 21 | add4d | |- ( A e. CC -> ( ( 1 + ( _i x. A ) ) + ( ( ( ( _i x. A ) ^ 2 ) / 2 ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) ) = ( ( 1 + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( _i x. A ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) ) ) |
| 25 | 2nn0 | |- 2 e. NN0 |
|
| 26 | mulexp | |- ( ( _i e. CC /\ A e. CC /\ 2 e. NN0 ) -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
|
| 27 | 2 25 26 | mp3an13 | |- ( A e. CC -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) |
| 28 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 29 | 28 | oveq1i | |- ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) |
| 30 | 29 | a1i | |- ( A e. CC -> ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) ) |
| 31 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 32 | 31 | mulm1d | |- ( A e. CC -> ( -u 1 x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) |
| 33 | 27 30 32 | 3eqtrd | |- ( A e. CC -> ( ( _i x. A ) ^ 2 ) = -u ( A ^ 2 ) ) |
| 34 | 33 | oveq1d | |- ( A e. CC -> ( ( ( _i x. A ) ^ 2 ) / 2 ) = ( -u ( A ^ 2 ) / 2 ) ) |
| 35 | 2cn | |- 2 e. CC |
|
| 36 | 2ne0 | |- 2 =/= 0 |
|
| 37 | divneg | |- ( ( ( A ^ 2 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( ( A ^ 2 ) / 2 ) = ( -u ( A ^ 2 ) / 2 ) ) |
|
| 38 | 35 36 37 | mp3an23 | |- ( ( A ^ 2 ) e. CC -> -u ( ( A ^ 2 ) / 2 ) = ( -u ( A ^ 2 ) / 2 ) ) |
| 39 | 31 38 | syl | |- ( A e. CC -> -u ( ( A ^ 2 ) / 2 ) = ( -u ( A ^ 2 ) / 2 ) ) |
| 40 | 34 39 | eqtr4d | |- ( A e. CC -> ( ( ( _i x. A ) ^ 2 ) / 2 ) = -u ( ( A ^ 2 ) / 2 ) ) |
| 41 | 40 | oveq2d | |- ( A e. CC -> ( 1 + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) = ( 1 + -u ( ( A ^ 2 ) / 2 ) ) ) |
| 42 | 31 | halfcld | |- ( A e. CC -> ( ( A ^ 2 ) / 2 ) e. CC ) |
| 43 | negsub | |- ( ( 1 e. CC /\ ( ( A ^ 2 ) / 2 ) e. CC ) -> ( 1 + -u ( ( A ^ 2 ) / 2 ) ) = ( 1 - ( ( A ^ 2 ) / 2 ) ) ) |
|
| 44 | 7 42 43 | sylancr | |- ( A e. CC -> ( 1 + -u ( ( A ^ 2 ) / 2 ) ) = ( 1 - ( ( A ^ 2 ) / 2 ) ) ) |
| 45 | 41 44 | eqtrd | |- ( A e. CC -> ( 1 + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) = ( 1 - ( ( A ^ 2 ) / 2 ) ) ) |
| 46 | mulexp | |- ( ( _i e. CC /\ A e. CC /\ 3 e. NN0 ) -> ( ( _i x. A ) ^ 3 ) = ( ( _i ^ 3 ) x. ( A ^ 3 ) ) ) |
|
| 47 | 2 12 46 | mp3an13 | |- ( A e. CC -> ( ( _i x. A ) ^ 3 ) = ( ( _i ^ 3 ) x. ( A ^ 3 ) ) ) |
| 48 | i3 | |- ( _i ^ 3 ) = -u _i |
|
| 49 | 48 | oveq1i | |- ( ( _i ^ 3 ) x. ( A ^ 3 ) ) = ( -u _i x. ( A ^ 3 ) ) |
| 50 | 47 49 | eqtrdi | |- ( A e. CC -> ( ( _i x. A ) ^ 3 ) = ( -u _i x. ( A ^ 3 ) ) ) |
| 51 | 50 | oveq1d | |- ( A e. CC -> ( ( ( _i x. A ) ^ 3 ) / 6 ) = ( ( -u _i x. ( A ^ 3 ) ) / 6 ) ) |
| 52 | expcl | |- ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ 3 ) e. CC ) |
|
| 53 | 12 52 | mpan2 | |- ( A e. CC -> ( A ^ 3 ) e. CC ) |
| 54 | negicn | |- -u _i e. CC |
|
| 55 | 15 18 | pm3.2i | |- ( 6 e. CC /\ 6 =/= 0 ) |
| 56 | divass | |- ( ( -u _i e. CC /\ ( A ^ 3 ) e. CC /\ ( 6 e. CC /\ 6 =/= 0 ) ) -> ( ( -u _i x. ( A ^ 3 ) ) / 6 ) = ( -u _i x. ( ( A ^ 3 ) / 6 ) ) ) |
|
| 57 | 54 55 56 | mp3an13 | |- ( ( A ^ 3 ) e. CC -> ( ( -u _i x. ( A ^ 3 ) ) / 6 ) = ( -u _i x. ( ( A ^ 3 ) / 6 ) ) ) |
| 58 | 53 57 | syl | |- ( A e. CC -> ( ( -u _i x. ( A ^ 3 ) ) / 6 ) = ( -u _i x. ( ( A ^ 3 ) / 6 ) ) ) |
| 59 | divcl | |- ( ( ( A ^ 3 ) e. CC /\ 6 e. CC /\ 6 =/= 0 ) -> ( ( A ^ 3 ) / 6 ) e. CC ) |
|
| 60 | 15 18 59 | mp3an23 | |- ( ( A ^ 3 ) e. CC -> ( ( A ^ 3 ) / 6 ) e. CC ) |
| 61 | 53 60 | syl | |- ( A e. CC -> ( ( A ^ 3 ) / 6 ) e. CC ) |
| 62 | mulneg12 | |- ( ( _i e. CC /\ ( ( A ^ 3 ) / 6 ) e. CC ) -> ( -u _i x. ( ( A ^ 3 ) / 6 ) ) = ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) |
|
| 63 | 2 61 62 | sylancr | |- ( A e. CC -> ( -u _i x. ( ( A ^ 3 ) / 6 ) ) = ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) |
| 64 | 51 58 63 | 3eqtrd | |- ( A e. CC -> ( ( ( _i x. A ) ^ 3 ) / 6 ) = ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) |
| 65 | 64 | oveq2d | |- ( A e. CC -> ( ( _i x. A ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) = ( ( _i x. A ) + ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) ) |
| 66 | 61 | negcld | |- ( A e. CC -> -u ( ( A ^ 3 ) / 6 ) e. CC ) |
| 67 | adddi | |- ( ( _i e. CC /\ A e. CC /\ -u ( ( A ^ 3 ) / 6 ) e. CC ) -> ( _i x. ( A + -u ( ( A ^ 3 ) / 6 ) ) ) = ( ( _i x. A ) + ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) ) |
|
| 68 | 2 67 | mp3an1 | |- ( ( A e. CC /\ -u ( ( A ^ 3 ) / 6 ) e. CC ) -> ( _i x. ( A + -u ( ( A ^ 3 ) / 6 ) ) ) = ( ( _i x. A ) + ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) ) |
| 69 | 66 68 | mpdan | |- ( A e. CC -> ( _i x. ( A + -u ( ( A ^ 3 ) / 6 ) ) ) = ( ( _i x. A ) + ( _i x. -u ( ( A ^ 3 ) / 6 ) ) ) ) |
| 70 | negsub | |- ( ( A e. CC /\ ( ( A ^ 3 ) / 6 ) e. CC ) -> ( A + -u ( ( A ^ 3 ) / 6 ) ) = ( A - ( ( A ^ 3 ) / 6 ) ) ) |
|
| 71 | 61 70 | mpdan | |- ( A e. CC -> ( A + -u ( ( A ^ 3 ) / 6 ) ) = ( A - ( ( A ^ 3 ) / 6 ) ) ) |
| 72 | 71 | oveq2d | |- ( A e. CC -> ( _i x. ( A + -u ( ( A ^ 3 ) / 6 ) ) ) = ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) |
| 73 | 65 69 72 | 3eqtr2d | |- ( A e. CC -> ( ( _i x. A ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) = ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) |
| 74 | 45 73 | oveq12d | |- ( A e. CC -> ( ( 1 + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( _i x. A ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) ) |
| 75 | 22 24 74 | 3eqtrd | |- ( A e. CC -> ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) = ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) ) |
| 76 | 75 | oveq1d | |- ( A e. CC -> ( ( ( ( 1 + ( _i x. A ) ) + ( ( ( _i x. A ) ^ 2 ) / 2 ) ) + ( ( ( _i x. A ) ^ 3 ) / 6 ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) = ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
| 77 | 6 76 | eqtrd | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |