This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ef4p.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| Assertion | ef4p | |- ( A e. CC -> ( exp ` A ) = ( ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 3 ) / 6 ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ef4p.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 2 | df-4 | |- 4 = ( 3 + 1 ) |
|
| 3 | 3nn0 | |- 3 e. NN0 |
|
| 4 | id | |- ( A e. CC -> A e. CC ) |
|
| 5 | ax-1cn | |- 1 e. CC |
|
| 6 | addcl | |- ( ( 1 e. CC /\ A e. CC ) -> ( 1 + A ) e. CC ) |
|
| 7 | 5 6 | mpan | |- ( A e. CC -> ( 1 + A ) e. CC ) |
| 8 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 9 | 8 | halfcld | |- ( A e. CC -> ( ( A ^ 2 ) / 2 ) e. CC ) |
| 10 | 7 9 | addcld | |- ( A e. CC -> ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) e. CC ) |
| 11 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 12 | 2nn0 | |- 2 e. NN0 |
|
| 13 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 14 | 1nn0 | |- 1 e. NN0 |
|
| 15 | 5 | a1i | |- ( A e. CC -> 1 e. CC ) |
| 16 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 17 | 0nn0 | |- 0 e. NN0 |
|
| 18 | 0cnd | |- ( A e. CC -> 0 e. CC ) |
|
| 19 | 1 | efval2 | |- ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( F ` k ) ) |
| 20 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 21 | 20 | sumeq1i | |- sum_ k e. NN0 ( F ` k ) = sum_ k e. ( ZZ>= ` 0 ) ( F ` k ) |
| 22 | 19 21 | eqtr2di | |- ( A e. CC -> sum_ k e. ( ZZ>= ` 0 ) ( F ` k ) = ( exp ` A ) ) |
| 23 | 22 | oveq2d | |- ( A e. CC -> ( 0 + sum_ k e. ( ZZ>= ` 0 ) ( F ` k ) ) = ( 0 + ( exp ` A ) ) ) |
| 24 | efcl | |- ( A e. CC -> ( exp ` A ) e. CC ) |
|
| 25 | 24 | addlidd | |- ( A e. CC -> ( 0 + ( exp ` A ) ) = ( exp ` A ) ) |
| 26 | 23 25 | eqtr2d | |- ( A e. CC -> ( exp ` A ) = ( 0 + sum_ k e. ( ZZ>= ` 0 ) ( F ` k ) ) ) |
| 27 | eft0val | |- ( A e. CC -> ( ( A ^ 0 ) / ( ! ` 0 ) ) = 1 ) |
|
| 28 | 27 | oveq2d | |- ( A e. CC -> ( 0 + ( ( A ^ 0 ) / ( ! ` 0 ) ) ) = ( 0 + 1 ) ) |
| 29 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 30 | 28 29 | eqtrdi | |- ( A e. CC -> ( 0 + ( ( A ^ 0 ) / ( ! ` 0 ) ) ) = 1 ) |
| 31 | 1 16 17 4 18 26 30 | efsep | |- ( A e. CC -> ( exp ` A ) = ( 1 + sum_ k e. ( ZZ>= ` 1 ) ( F ` k ) ) ) |
| 32 | exp1 | |- ( A e. CC -> ( A ^ 1 ) = A ) |
|
| 33 | fac1 | |- ( ! ` 1 ) = 1 |
|
| 34 | 33 | a1i | |- ( A e. CC -> ( ! ` 1 ) = 1 ) |
| 35 | 32 34 | oveq12d | |- ( A e. CC -> ( ( A ^ 1 ) / ( ! ` 1 ) ) = ( A / 1 ) ) |
| 36 | div1 | |- ( A e. CC -> ( A / 1 ) = A ) |
|
| 37 | 35 36 | eqtrd | |- ( A e. CC -> ( ( A ^ 1 ) / ( ! ` 1 ) ) = A ) |
| 38 | 37 | oveq2d | |- ( A e. CC -> ( 1 + ( ( A ^ 1 ) / ( ! ` 1 ) ) ) = ( 1 + A ) ) |
| 39 | 1 13 14 4 15 31 38 | efsep | |- ( A e. CC -> ( exp ` A ) = ( ( 1 + A ) + sum_ k e. ( ZZ>= ` 2 ) ( F ` k ) ) ) |
| 40 | fac2 | |- ( ! ` 2 ) = 2 |
|
| 41 | 40 | oveq2i | |- ( ( A ^ 2 ) / ( ! ` 2 ) ) = ( ( A ^ 2 ) / 2 ) |
| 42 | 41 | oveq2i | |- ( ( 1 + A ) + ( ( A ^ 2 ) / ( ! ` 2 ) ) ) = ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) |
| 43 | 42 | a1i | |- ( A e. CC -> ( ( 1 + A ) + ( ( A ^ 2 ) / ( ! ` 2 ) ) ) = ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) ) |
| 44 | 1 11 12 4 7 39 43 | efsep | |- ( A e. CC -> ( exp ` A ) = ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + sum_ k e. ( ZZ>= ` 3 ) ( F ` k ) ) ) |
| 45 | fac3 | |- ( ! ` 3 ) = 6 |
|
| 46 | 45 | oveq2i | |- ( ( A ^ 3 ) / ( ! ` 3 ) ) = ( ( A ^ 3 ) / 6 ) |
| 47 | 46 | oveq2i | |- ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 3 ) / ( ! ` 3 ) ) ) = ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 3 ) / 6 ) ) |
| 48 | 47 | a1i | |- ( A e. CC -> ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 3 ) / ( ! ` 3 ) ) ) = ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 3 ) / 6 ) ) ) |
| 49 | 1 2 3 4 10 44 48 | efsep | |- ( A e. CC -> ( exp ` A ) = ( ( ( ( 1 + A ) + ( ( A ^ 2 ) / 2 ) ) + ( ( A ^ 3 ) / 6 ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |