This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efi4p.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| Assertion | efi4p | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efi4p.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 5 | 1 | ef4p | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( ( ( 1 + ( i · 𝐴 ) ) + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( ( ( 1 + ( i · 𝐴 ) ) + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) | |
| 9 | 7 4 8 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 10 | 4 | sqcld | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 11 | 10 | halfcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ∈ ℂ ) |
| 12 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 13 | expcl | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( ( i · 𝐴 ) ↑ 3 ) ∈ ℂ ) | |
| 14 | 4 12 13 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 3 ) ∈ ℂ ) |
| 15 | 6cn | ⊢ 6 ∈ ℂ | |
| 16 | 6re | ⊢ 6 ∈ ℝ | |
| 17 | 6pos | ⊢ 0 < 6 | |
| 18 | 16 17 | gt0ne0ii | ⊢ 6 ≠ 0 |
| 19 | divcl | ⊢ ( ( ( ( i · 𝐴 ) ↑ 3 ) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0 ) → ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ∈ ℂ ) | |
| 20 | 15 18 19 | mp3an23 | ⊢ ( ( ( i · 𝐴 ) ↑ 3 ) ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ∈ ℂ ) |
| 21 | 14 20 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ∈ ℂ ) |
| 22 | 9 11 21 | addassd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 + ( i · 𝐴 ) ) + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) = ( ( 1 + ( i · 𝐴 ) ) + ( ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) ) ) |
| 23 | 7 | a1i | ⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) |
| 24 | 23 4 11 21 | add4d | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) + ( ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) ) = ( ( 1 + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( i · 𝐴 ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) ) ) |
| 25 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 26 | mulexp | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ( i · 𝐴 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) | |
| 27 | 2 25 26 | mp3an13 | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
| 28 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 29 | 28 | oveq1i | ⊢ ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = ( - 1 · ( 𝐴 ↑ 2 ) ) |
| 30 | 29 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = ( - 1 · ( 𝐴 ↑ 2 ) ) ) |
| 31 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 32 | 31 | mulm1d | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( 𝐴 ↑ 2 ) ) = - ( 𝐴 ↑ 2 ) ) |
| 33 | 27 30 32 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = - ( 𝐴 ↑ 2 ) ) |
| 34 | 33 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) = ( - ( 𝐴 ↑ 2 ) / 2 ) ) |
| 35 | 2cn | ⊢ 2 ∈ ℂ | |
| 36 | 2ne0 | ⊢ 2 ≠ 0 | |
| 37 | divneg | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( ( 𝐴 ↑ 2 ) / 2 ) = ( - ( 𝐴 ↑ 2 ) / 2 ) ) | |
| 38 | 35 36 37 | mp3an23 | ⊢ ( ( 𝐴 ↑ 2 ) ∈ ℂ → - ( ( 𝐴 ↑ 2 ) / 2 ) = ( - ( 𝐴 ↑ 2 ) / 2 ) ) |
| 39 | 31 38 | syl | ⊢ ( 𝐴 ∈ ℂ → - ( ( 𝐴 ↑ 2 ) / 2 ) = ( - ( 𝐴 ↑ 2 ) / 2 ) ) |
| 40 | 34 39 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) = - ( ( 𝐴 ↑ 2 ) / 2 ) ) |
| 41 | 40 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( 1 + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) = ( 1 + - ( ( 𝐴 ↑ 2 ) / 2 ) ) ) |
| 42 | 31 | halfcld | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℂ ) |
| 43 | negsub | ⊢ ( ( 1 ∈ ℂ ∧ ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℂ ) → ( 1 + - ( ( 𝐴 ↑ 2 ) / 2 ) ) = ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ) | |
| 44 | 7 42 43 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 + - ( ( 𝐴 ↑ 2 ) / 2 ) ) = ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ) |
| 45 | 41 44 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( 1 + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) = ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) ) |
| 46 | mulexp | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( ( i · 𝐴 ) ↑ 3 ) = ( ( i ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) | |
| 47 | 2 12 46 | mp3an13 | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 3 ) = ( ( i ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) |
| 48 | i3 | ⊢ ( i ↑ 3 ) = - i | |
| 49 | 48 | oveq1i | ⊢ ( ( i ↑ 3 ) · ( 𝐴 ↑ 3 ) ) = ( - i · ( 𝐴 ↑ 3 ) ) |
| 50 | 47 49 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 3 ) = ( - i · ( 𝐴 ↑ 3 ) ) ) |
| 51 | 50 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) = ( ( - i · ( 𝐴 ↑ 3 ) ) / 6 ) ) |
| 52 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) | |
| 53 | 12 52 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
| 54 | negicn | ⊢ - i ∈ ℂ | |
| 55 | 15 18 | pm3.2i | ⊢ ( 6 ∈ ℂ ∧ 6 ≠ 0 ) |
| 56 | divass | ⊢ ( ( - i ∈ ℂ ∧ ( 𝐴 ↑ 3 ) ∈ ℂ ∧ ( 6 ∈ ℂ ∧ 6 ≠ 0 ) ) → ( ( - i · ( 𝐴 ↑ 3 ) ) / 6 ) = ( - i · ( ( 𝐴 ↑ 3 ) / 6 ) ) ) | |
| 57 | 54 55 56 | mp3an13 | ⊢ ( ( 𝐴 ↑ 3 ) ∈ ℂ → ( ( - i · ( 𝐴 ↑ 3 ) ) / 6 ) = ( - i · ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 58 | 53 57 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( - i · ( 𝐴 ↑ 3 ) ) / 6 ) = ( - i · ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 59 | divcl | ⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0 ) → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) | |
| 60 | 15 18 59 | mp3an23 | ⊢ ( ( 𝐴 ↑ 3 ) ∈ ℂ → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) |
| 61 | 53 60 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) |
| 62 | mulneg12 | ⊢ ( ( i ∈ ℂ ∧ ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) → ( - i · ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) | |
| 63 | 2 61 62 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 64 | 51 58 63 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) = ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 65 | 64 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) = ( ( i · 𝐴 ) + ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 66 | 61 | negcld | ⊢ ( 𝐴 ∈ ℂ → - ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) |
| 67 | adddi | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ - ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) → ( i · ( 𝐴 + - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( ( i · 𝐴 ) + ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) | |
| 68 | 2 67 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ - ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) → ( i · ( 𝐴 + - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( ( i · 𝐴 ) + ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 69 | 66 68 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( i · ( 𝐴 + - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( ( i · 𝐴 ) + ( i · - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 70 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝐴 ↑ 3 ) / 6 ) ∈ ℂ ) → ( 𝐴 + - ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) | |
| 71 | 61 70 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - ( ( 𝐴 ↑ 3 ) / 6 ) ) = ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 72 | 71 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( i · ( 𝐴 + - ( ( 𝐴 ↑ 3 ) / 6 ) ) ) = ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 73 | 65 69 72 | 3eqtr2d | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) = ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) |
| 74 | 45 73 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( i · 𝐴 ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) ) = ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) ) |
| 75 | 22 24 74 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 + ( i · 𝐴 ) ) + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) = ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) ) |
| 76 | 75 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( 1 + ( i · 𝐴 ) ) + ( ( ( i · 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( ( i · 𝐴 ) ↑ 3 ) / 6 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) = ( ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 77 | 6 76 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( ( 1 − ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( i · ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 6 ) ) ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |