This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of a complex conjugate. Equation 3 of Gleason p. 308. (Contributed by NM, 29-Apr-2005) (Revised by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efcj | |- ( A e. CC -> ( exp ` ( * ` A ) ) = ( * ` ( exp ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 2 | eqid | |- ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) |
|
| 3 | 2 | efcvg | |- ( ( * ` A ) e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` ( * ` A ) ) ) |
| 4 | 1 3 | syl | |- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` ( * ` A ) ) ) |
| 5 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 6 | eqid | |- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 7 | 6 | efcvg | |- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` A ) ) |
| 8 | seqex | |- seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) e. _V |
|
| 9 | 8 | a1i | |- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) e. _V ) |
| 10 | 0zd | |- ( A e. CC -> 0 e. ZZ ) |
|
| 11 | 6 | eftval | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 12 | 11 | adantl | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 13 | eftcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
|
| 14 | 12 13 | eqeltrd | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
| 15 | 5 10 14 | serf | |- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) : NN0 --> CC ) |
| 16 | 15 | ffvelcdmda | |- ( ( A e. CC /\ j e. NN0 ) -> ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) e. CC ) |
| 17 | addcl | |- ( ( k e. CC /\ m e. CC ) -> ( k + m ) e. CC ) |
|
| 18 | 17 | adantl | |- ( ( ( A e. CC /\ j e. NN0 ) /\ ( k e. CC /\ m e. CC ) ) -> ( k + m ) e. CC ) |
| 19 | simpl | |- ( ( A e. CC /\ j e. NN0 ) -> A e. CC ) |
|
| 20 | elfznn0 | |- ( k e. ( 0 ... j ) -> k e. NN0 ) |
|
| 21 | 19 20 14 | syl2an | |- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
| 22 | simpr | |- ( ( A e. CC /\ j e. NN0 ) -> j e. NN0 ) |
|
| 23 | 22 5 | eleqtrdi | |- ( ( A e. CC /\ j e. NN0 ) -> j e. ( ZZ>= ` 0 ) ) |
| 24 | cjadd | |- ( ( k e. CC /\ m e. CC ) -> ( * ` ( k + m ) ) = ( ( * ` k ) + ( * ` m ) ) ) |
|
| 25 | 24 | adantl | |- ( ( ( A e. CC /\ j e. NN0 ) /\ ( k e. CC /\ m e. CC ) ) -> ( * ` ( k + m ) ) = ( ( * ` k ) + ( * ` m ) ) ) |
| 26 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 27 | faccl | |- ( k e. NN0 -> ( ! ` k ) e. NN ) |
|
| 28 | 27 | adantl | |- ( ( A e. CC /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
| 29 | 28 | nncnd | |- ( ( A e. CC /\ k e. NN0 ) -> ( ! ` k ) e. CC ) |
| 30 | 28 | nnne0d | |- ( ( A e. CC /\ k e. NN0 ) -> ( ! ` k ) =/= 0 ) |
| 31 | 26 29 30 | cjdivd | |- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( * ` ( A ^ k ) ) / ( * ` ( ! ` k ) ) ) ) |
| 32 | cjexp | |- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) |
|
| 33 | 28 | nnred | |- ( ( A e. CC /\ k e. NN0 ) -> ( ! ` k ) e. RR ) |
| 34 | 33 | cjred | |- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ! ` k ) ) = ( ! ` k ) ) |
| 35 | 32 34 | oveq12d | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( * ` ( A ^ k ) ) / ( * ` ( ! ` k ) ) ) = ( ( ( * ` A ) ^ k ) / ( ! ` k ) ) ) |
| 36 | 31 35 | eqtrd | |- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( * ` A ) ^ k ) / ( ! ` k ) ) ) |
| 37 | 12 | fveq2d | |- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( * ` ( ( A ^ k ) / ( ! ` k ) ) ) ) |
| 38 | 2 | eftval | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( ( * ` A ) ^ k ) / ( ! ` k ) ) ) |
| 39 | 38 | adantl | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( ( * ` A ) ^ k ) / ( ! ` k ) ) ) |
| 40 | 36 37 39 | 3eqtr4d | |- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) |
| 41 | 19 20 40 | syl2an | |- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( * ` ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ` k ) ) |
| 42 | 18 21 23 25 41 | seqhomo | |- ( ( A e. CC /\ j e. NN0 ) -> ( * ` ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ` j ) ) |
| 43 | 42 | eqcomd | |- ( ( A e. CC /\ j e. NN0 ) -> ( seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ` j ) = ( * ` ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) ) |
| 44 | 5 7 9 10 16 43 | climcj | |- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( * ` ( exp ` A ) ) ) |
| 45 | climuni | |- ( ( seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` ( * ` A ) ) /\ seq 0 ( + , ( n e. NN0 |-> ( ( ( * ` A ) ^ n ) / ( ! ` n ) ) ) ) ~~> ( * ` ( exp ` A ) ) ) -> ( exp ` ( * ` A ) ) = ( * ` ( exp ` A ) ) ) |
|
| 46 | 4 44 45 | syl2anc | |- ( A e. CC -> ( exp ` ( * ` A ) ) = ( * ` ( exp ` A ) ) ) |