This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjexp | |- ( ( A e. CC /\ N e. NN0 ) -> ( * ` ( A ^ N ) ) = ( ( * ` A ) ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( j = 0 -> ( A ^ j ) = ( A ^ 0 ) ) |
|
| 2 | 1 | fveq2d | |- ( j = 0 -> ( * ` ( A ^ j ) ) = ( * ` ( A ^ 0 ) ) ) |
| 3 | oveq2 | |- ( j = 0 -> ( ( * ` A ) ^ j ) = ( ( * ` A ) ^ 0 ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( j = 0 -> ( ( * ` ( A ^ j ) ) = ( ( * ` A ) ^ j ) <-> ( * ` ( A ^ 0 ) ) = ( ( * ` A ) ^ 0 ) ) ) |
| 5 | oveq2 | |- ( j = k -> ( A ^ j ) = ( A ^ k ) ) |
|
| 6 | 5 | fveq2d | |- ( j = k -> ( * ` ( A ^ j ) ) = ( * ` ( A ^ k ) ) ) |
| 7 | oveq2 | |- ( j = k -> ( ( * ` A ) ^ j ) = ( ( * ` A ) ^ k ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( j = k -> ( ( * ` ( A ^ j ) ) = ( ( * ` A ) ^ j ) <-> ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) ) |
| 9 | oveq2 | |- ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) |
|
| 10 | 9 | fveq2d | |- ( j = ( k + 1 ) -> ( * ` ( A ^ j ) ) = ( * ` ( A ^ ( k + 1 ) ) ) ) |
| 11 | oveq2 | |- ( j = ( k + 1 ) -> ( ( * ` A ) ^ j ) = ( ( * ` A ) ^ ( k + 1 ) ) ) |
|
| 12 | 10 11 | eqeq12d | |- ( j = ( k + 1 ) -> ( ( * ` ( A ^ j ) ) = ( ( * ` A ) ^ j ) <-> ( * ` ( A ^ ( k + 1 ) ) ) = ( ( * ` A ) ^ ( k + 1 ) ) ) ) |
| 13 | oveq2 | |- ( j = N -> ( A ^ j ) = ( A ^ N ) ) |
|
| 14 | 13 | fveq2d | |- ( j = N -> ( * ` ( A ^ j ) ) = ( * ` ( A ^ N ) ) ) |
| 15 | oveq2 | |- ( j = N -> ( ( * ` A ) ^ j ) = ( ( * ` A ) ^ N ) ) |
|
| 16 | 14 15 | eqeq12d | |- ( j = N -> ( ( * ` ( A ^ j ) ) = ( ( * ` A ) ^ j ) <-> ( * ` ( A ^ N ) ) = ( ( * ` A ) ^ N ) ) ) |
| 17 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 18 | 17 | fveq2d | |- ( A e. CC -> ( * ` ( A ^ 0 ) ) = ( * ` 1 ) ) |
| 19 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 20 | exp0 | |- ( ( * ` A ) e. CC -> ( ( * ` A ) ^ 0 ) = 1 ) |
|
| 21 | 1re | |- 1 e. RR |
|
| 22 | cjre | |- ( 1 e. RR -> ( * ` 1 ) = 1 ) |
|
| 23 | 21 22 | ax-mp | |- ( * ` 1 ) = 1 |
| 24 | 20 23 | eqtr4di | |- ( ( * ` A ) e. CC -> ( ( * ` A ) ^ 0 ) = ( * ` 1 ) ) |
| 25 | 19 24 | syl | |- ( A e. CC -> ( ( * ` A ) ^ 0 ) = ( * ` 1 ) ) |
| 26 | 18 25 | eqtr4d | |- ( A e. CC -> ( * ` ( A ^ 0 ) ) = ( ( * ` A ) ^ 0 ) ) |
| 27 | expp1 | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
|
| 28 | 27 | fveq2d | |- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( A ^ ( k + 1 ) ) ) = ( * ` ( ( A ^ k ) x. A ) ) ) |
| 29 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 30 | simpl | |- ( ( A e. CC /\ k e. NN0 ) -> A e. CC ) |
|
| 31 | cjmul | |- ( ( ( A ^ k ) e. CC /\ A e. CC ) -> ( * ` ( ( A ^ k ) x. A ) ) = ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) ) |
|
| 32 | 29 30 31 | syl2anc | |- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( A ^ k ) x. A ) ) = ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) ) |
| 33 | 28 32 | eqtrd | |- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( A ^ ( k + 1 ) ) ) = ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) ) |
| 34 | 33 | adantr | |- ( ( ( A e. CC /\ k e. NN0 ) /\ ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) -> ( * ` ( A ^ ( k + 1 ) ) ) = ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) ) |
| 35 | oveq1 | |- ( ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) -> ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) = ( ( ( * ` A ) ^ k ) x. ( * ` A ) ) ) |
|
| 36 | expp1 | |- ( ( ( * ` A ) e. CC /\ k e. NN0 ) -> ( ( * ` A ) ^ ( k + 1 ) ) = ( ( ( * ` A ) ^ k ) x. ( * ` A ) ) ) |
|
| 37 | 19 36 | sylan | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( * ` A ) ^ ( k + 1 ) ) = ( ( ( * ` A ) ^ k ) x. ( * ` A ) ) ) |
| 38 | 37 | eqcomd | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( ( * ` A ) ^ k ) x. ( * ` A ) ) = ( ( * ` A ) ^ ( k + 1 ) ) ) |
| 39 | 35 38 | sylan9eqr | |- ( ( ( A e. CC /\ k e. NN0 ) /\ ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) -> ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) = ( ( * ` A ) ^ ( k + 1 ) ) ) |
| 40 | 34 39 | eqtrd | |- ( ( ( A e. CC /\ k e. NN0 ) /\ ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) -> ( * ` ( A ^ ( k + 1 ) ) ) = ( ( * ` A ) ^ ( k + 1 ) ) ) |
| 41 | 4 8 12 16 26 40 | nn0indd | |- ( ( A e. CC /\ N e. NN0 ) -> ( * ` ( A ^ N ) ) = ( ( * ` A ) ^ N ) ) |