This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrecg.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvrecg.a | |- ( ph -> A e. CC ) |
||
| dvrecg.b | |- ( ( ph /\ x e. X ) -> B e. ( CC \ { 0 } ) ) |
||
| dvrecg.c | |- ( ( ph /\ x e. X ) -> C e. V ) |
||
| dvrecg.db | |- ( ph -> ( S _D ( x e. X |-> B ) ) = ( x e. X |-> C ) ) |
||
| Assertion | dvrecg | |- ( ph -> ( S _D ( x e. X |-> ( A / B ) ) ) = ( x e. X |-> -u ( ( A x. C ) / ( B ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrecg.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvrecg.a | |- ( ph -> A e. CC ) |
|
| 3 | dvrecg.b | |- ( ( ph /\ x e. X ) -> B e. ( CC \ { 0 } ) ) |
|
| 4 | dvrecg.c | |- ( ( ph /\ x e. X ) -> C e. V ) |
|
| 5 | dvrecg.db | |- ( ph -> ( S _D ( x e. X |-> B ) ) = ( x e. X |-> C ) ) |
|
| 6 | cnelprrecn | |- CC e. { RR , CC } |
|
| 7 | 6 | a1i | |- ( ph -> CC e. { RR , CC } ) |
| 8 | 2 | adantr | |- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> A e. CC ) |
| 9 | eldifi | |- ( y e. ( CC \ { 0 } ) -> y e. CC ) |
|
| 10 | 9 | adantl | |- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> y e. CC ) |
| 11 | eldifsni | |- ( y e. ( CC \ { 0 } ) -> y =/= 0 ) |
|
| 12 | 11 | adantl | |- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> y =/= 0 ) |
| 13 | 8 10 12 | divcld | |- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( A / y ) e. CC ) |
| 14 | 10 | sqcld | |- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( y ^ 2 ) e. CC ) |
| 15 | 2z | |- 2 e. ZZ |
|
| 16 | 15 | a1i | |- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> 2 e. ZZ ) |
| 17 | 10 12 16 | expne0d | |- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( y ^ 2 ) =/= 0 ) |
| 18 | 8 14 17 | divcld | |- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> ( A / ( y ^ 2 ) ) e. CC ) |
| 19 | 18 | negcld | |- ( ( ph /\ y e. ( CC \ { 0 } ) ) -> -u ( A / ( y ^ 2 ) ) e. CC ) |
| 20 | dvrec | |- ( A e. CC -> ( CC _D ( y e. ( CC \ { 0 } ) |-> ( A / y ) ) ) = ( y e. ( CC \ { 0 } ) |-> -u ( A / ( y ^ 2 ) ) ) ) |
|
| 21 | 2 20 | syl | |- ( ph -> ( CC _D ( y e. ( CC \ { 0 } ) |-> ( A / y ) ) ) = ( y e. ( CC \ { 0 } ) |-> -u ( A / ( y ^ 2 ) ) ) ) |
| 22 | oveq2 | |- ( y = B -> ( A / y ) = ( A / B ) ) |
|
| 23 | oveq1 | |- ( y = B -> ( y ^ 2 ) = ( B ^ 2 ) ) |
|
| 24 | 23 | oveq2d | |- ( y = B -> ( A / ( y ^ 2 ) ) = ( A / ( B ^ 2 ) ) ) |
| 25 | 24 | negeqd | |- ( y = B -> -u ( A / ( y ^ 2 ) ) = -u ( A / ( B ^ 2 ) ) ) |
| 26 | 1 7 3 4 13 19 5 21 22 25 | dvmptco | |- ( ph -> ( S _D ( x e. X |-> ( A / B ) ) ) = ( x e. X |-> ( -u ( A / ( B ^ 2 ) ) x. C ) ) ) |
| 27 | 2 | adantr | |- ( ( ph /\ x e. X ) -> A e. CC ) |
| 28 | eldifi | |- ( B e. ( CC \ { 0 } ) -> B e. CC ) |
|
| 29 | 3 28 | syl | |- ( ( ph /\ x e. X ) -> B e. CC ) |
| 30 | 29 | sqcld | |- ( ( ph /\ x e. X ) -> ( B ^ 2 ) e. CC ) |
| 31 | eldifsn | |- ( B e. ( CC \ { 0 } ) <-> ( B e. CC /\ B =/= 0 ) ) |
|
| 32 | 3 31 | sylib | |- ( ( ph /\ x e. X ) -> ( B e. CC /\ B =/= 0 ) ) |
| 33 | 32 | simprd | |- ( ( ph /\ x e. X ) -> B =/= 0 ) |
| 34 | 15 | a1i | |- ( ( ph /\ x e. X ) -> 2 e. ZZ ) |
| 35 | 29 33 34 | expne0d | |- ( ( ph /\ x e. X ) -> ( B ^ 2 ) =/= 0 ) |
| 36 | 27 30 35 | divcld | |- ( ( ph /\ x e. X ) -> ( A / ( B ^ 2 ) ) e. CC ) |
| 37 | 1 29 4 5 | dvmptcl | |- ( ( ph /\ x e. X ) -> C e. CC ) |
| 38 | 36 37 | mulneg1d | |- ( ( ph /\ x e. X ) -> ( -u ( A / ( B ^ 2 ) ) x. C ) = -u ( ( A / ( B ^ 2 ) ) x. C ) ) |
| 39 | 27 37 30 35 | div23d | |- ( ( ph /\ x e. X ) -> ( ( A x. C ) / ( B ^ 2 ) ) = ( ( A / ( B ^ 2 ) ) x. C ) ) |
| 40 | 39 | eqcomd | |- ( ( ph /\ x e. X ) -> ( ( A / ( B ^ 2 ) ) x. C ) = ( ( A x. C ) / ( B ^ 2 ) ) ) |
| 41 | 40 | negeqd | |- ( ( ph /\ x e. X ) -> -u ( ( A / ( B ^ 2 ) ) x. C ) = -u ( ( A x. C ) / ( B ^ 2 ) ) ) |
| 42 | 38 41 | eqtrd | |- ( ( ph /\ x e. X ) -> ( -u ( A / ( B ^ 2 ) ) x. C ) = -u ( ( A x. C ) / ( B ^ 2 ) ) ) |
| 43 | 42 | mpteq2dva | |- ( ph -> ( x e. X |-> ( -u ( A / ( B ^ 2 ) ) x. C ) ) = ( x e. X |-> -u ( ( A x. C ) / ( B ^ 2 ) ) ) ) |
| 44 | 26 43 | eqtrd | |- ( ph -> ( S _D ( x e. X |-> ( A / B ) ) ) = ( x e. X |-> -u ( ( A x. C ) / ( B ^ 2 ) ) ) ) |