This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvferm . (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvferm.a | |- ( ph -> F : X --> RR ) |
|
| dvferm.b | |- ( ph -> X C_ RR ) |
||
| dvferm.u | |- ( ph -> U e. ( A (,) B ) ) |
||
| dvferm.s | |- ( ph -> ( A (,) B ) C_ X ) |
||
| dvferm.d | |- ( ph -> U e. dom ( RR _D F ) ) |
||
| dvferm2.r | |- ( ph -> A. y e. ( A (,) U ) ( F ` y ) <_ ( F ` U ) ) |
||
| dvferm2.z | |- ( ph -> ( ( RR _D F ) ` U ) < 0 ) |
||
| dvferm2.t | |- ( ph -> T e. RR+ ) |
||
| dvferm2.l | |- ( ph -> A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
||
| dvferm2.x | |- S = ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) |
||
| Assertion | dvferm2lem | |- -. ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvferm.a | |- ( ph -> F : X --> RR ) |
|
| 2 | dvferm.b | |- ( ph -> X C_ RR ) |
|
| 3 | dvferm.u | |- ( ph -> U e. ( A (,) B ) ) |
|
| 4 | dvferm.s | |- ( ph -> ( A (,) B ) C_ X ) |
|
| 5 | dvferm.d | |- ( ph -> U e. dom ( RR _D F ) ) |
|
| 6 | dvferm2.r | |- ( ph -> A. y e. ( A (,) U ) ( F ` y ) <_ ( F ` U ) ) |
|
| 7 | dvferm2.z | |- ( ph -> ( ( RR _D F ) ` U ) < 0 ) |
|
| 8 | dvferm2.t | |- ( ph -> T e. RR+ ) |
|
| 9 | dvferm2.l | |- ( ph -> A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
|
| 10 | dvferm2.x | |- S = ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) |
|
| 11 | mnfxr | |- -oo e. RR* |
|
| 12 | 11 | a1i | |- ( ph -> -oo e. RR* ) |
| 13 | ioossre | |- ( A (,) B ) C_ RR |
|
| 14 | 13 3 | sselid | |- ( ph -> U e. RR ) |
| 15 | 8 | rpred | |- ( ph -> T e. RR ) |
| 16 | 14 15 | resubcld | |- ( ph -> ( U - T ) e. RR ) |
| 17 | 16 | rexrd | |- ( ph -> ( U - T ) e. RR* ) |
| 18 | ne0i | |- ( U e. ( A (,) B ) -> ( A (,) B ) =/= (/) ) |
|
| 19 | ndmioo | |- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) ) |
|
| 20 | 19 | necon1ai | |- ( ( A (,) B ) =/= (/) -> ( A e. RR* /\ B e. RR* ) ) |
| 21 | 3 18 20 | 3syl | |- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
| 22 | 21 | simpld | |- ( ph -> A e. RR* ) |
| 23 | 17 22 | ifcld | |- ( ph -> if ( A <_ ( U - T ) , ( U - T ) , A ) e. RR* ) |
| 24 | 14 | rexrd | |- ( ph -> U e. RR* ) |
| 25 | 16 | mnfltd | |- ( ph -> -oo < ( U - T ) ) |
| 26 | xrmax2 | |- ( ( A e. RR* /\ ( U - T ) e. RR* ) -> ( U - T ) <_ if ( A <_ ( U - T ) , ( U - T ) , A ) ) |
|
| 27 | 22 17 26 | syl2anc | |- ( ph -> ( U - T ) <_ if ( A <_ ( U - T ) , ( U - T ) , A ) ) |
| 28 | 12 17 23 25 27 | xrltletrd | |- ( ph -> -oo < if ( A <_ ( U - T ) , ( U - T ) , A ) ) |
| 29 | 14 8 | ltsubrpd | |- ( ph -> ( U - T ) < U ) |
| 30 | eliooord | |- ( U e. ( A (,) B ) -> ( A < U /\ U < B ) ) |
|
| 31 | 3 30 | syl | |- ( ph -> ( A < U /\ U < B ) ) |
| 32 | 31 | simpld | |- ( ph -> A < U ) |
| 33 | breq1 | |- ( ( U - T ) = if ( A <_ ( U - T ) , ( U - T ) , A ) -> ( ( U - T ) < U <-> if ( A <_ ( U - T ) , ( U - T ) , A ) < U ) ) |
|
| 34 | breq1 | |- ( A = if ( A <_ ( U - T ) , ( U - T ) , A ) -> ( A < U <-> if ( A <_ ( U - T ) , ( U - T ) , A ) < U ) ) |
|
| 35 | 33 34 | ifboth | |- ( ( ( U - T ) < U /\ A < U ) -> if ( A <_ ( U - T ) , ( U - T ) , A ) < U ) |
| 36 | 29 32 35 | syl2anc | |- ( ph -> if ( A <_ ( U - T ) , ( U - T ) , A ) < U ) |
| 37 | xrre2 | |- ( ( ( -oo e. RR* /\ if ( A <_ ( U - T ) , ( U - T ) , A ) e. RR* /\ U e. RR* ) /\ ( -oo < if ( A <_ ( U - T ) , ( U - T ) , A ) /\ if ( A <_ ( U - T ) , ( U - T ) , A ) < U ) ) -> if ( A <_ ( U - T ) , ( U - T ) , A ) e. RR ) |
|
| 38 | 12 23 24 28 36 37 | syl32anc | |- ( ph -> if ( A <_ ( U - T ) , ( U - T ) , A ) e. RR ) |
| 39 | 38 14 | readdcld | |- ( ph -> ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) e. RR ) |
| 40 | 39 | rehalfcld | |- ( ph -> ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) e. RR ) |
| 41 | 10 40 | eqeltrid | |- ( ph -> S e. RR ) |
| 42 | avglt2 | |- ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) e. RR /\ U e. RR ) -> ( if ( A <_ ( U - T ) , ( U - T ) , A ) < U <-> ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) < U ) ) |
|
| 43 | 38 14 42 | syl2anc | |- ( ph -> ( if ( A <_ ( U - T ) , ( U - T ) , A ) < U <-> ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) < U ) ) |
| 44 | 36 43 | mpbid | |- ( ph -> ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) < U ) |
| 45 | 10 44 | eqbrtrid | |- ( ph -> S < U ) |
| 46 | 41 45 | ltned | |- ( ph -> S =/= U ) |
| 47 | 41 14 45 | ltled | |- ( ph -> S <_ U ) |
| 48 | 41 14 47 | abssuble0d | |- ( ph -> ( abs ` ( S - U ) ) = ( U - S ) ) |
| 49 | avglt1 | |- ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) e. RR /\ U e. RR ) -> ( if ( A <_ ( U - T ) , ( U - T ) , A ) < U <-> if ( A <_ ( U - T ) , ( U - T ) , A ) < ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) ) ) |
|
| 50 | 38 14 49 | syl2anc | |- ( ph -> ( if ( A <_ ( U - T ) , ( U - T ) , A ) < U <-> if ( A <_ ( U - T ) , ( U - T ) , A ) < ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) ) ) |
| 51 | 36 50 | mpbid | |- ( ph -> if ( A <_ ( U - T ) , ( U - T ) , A ) < ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) ) |
| 52 | 51 10 | breqtrrdi | |- ( ph -> if ( A <_ ( U - T ) , ( U - T ) , A ) < S ) |
| 53 | 16 38 41 27 52 | lelttrd | |- ( ph -> ( U - T ) < S ) |
| 54 | 14 15 41 53 | ltsub23d | |- ( ph -> ( U - S ) < T ) |
| 55 | 48 54 | eqbrtrd | |- ( ph -> ( abs ` ( S - U ) ) < T ) |
| 56 | neeq1 | |- ( z = S -> ( z =/= U <-> S =/= U ) ) |
|
| 57 | fvoveq1 | |- ( z = S -> ( abs ` ( z - U ) ) = ( abs ` ( S - U ) ) ) |
|
| 58 | 57 | breq1d | |- ( z = S -> ( ( abs ` ( z - U ) ) < T <-> ( abs ` ( S - U ) ) < T ) ) |
| 59 | 56 58 | anbi12d | |- ( z = S -> ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) <-> ( S =/= U /\ ( abs ` ( S - U ) ) < T ) ) ) |
| 60 | fveq2 | |- ( z = S -> ( F ` z ) = ( F ` S ) ) |
|
| 61 | 60 | oveq1d | |- ( z = S -> ( ( F ` z ) - ( F ` U ) ) = ( ( F ` S ) - ( F ` U ) ) ) |
| 62 | oveq1 | |- ( z = S -> ( z - U ) = ( S - U ) ) |
|
| 63 | 61 62 | oveq12d | |- ( z = S -> ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) = ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
| 64 | 63 | fvoveq1d | |- ( z = S -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) = ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) ) |
| 65 | 64 | breq1d | |- ( z = S -> ( ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) <-> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
| 66 | 59 65 | imbi12d | |- ( z = S -> ( ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) <-> ( ( S =/= U /\ ( abs ` ( S - U ) ) < T ) -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) ) |
| 67 | 21 | simprd | |- ( ph -> B e. RR* ) |
| 68 | 31 | simprd | |- ( ph -> U < B ) |
| 69 | 24 67 68 | xrltled | |- ( ph -> U <_ B ) |
| 70 | iooss2 | |- ( ( B e. RR* /\ U <_ B ) -> ( A (,) U ) C_ ( A (,) B ) ) |
|
| 71 | 67 69 70 | syl2anc | |- ( ph -> ( A (,) U ) C_ ( A (,) B ) ) |
| 72 | 71 4 | sstrd | |- ( ph -> ( A (,) U ) C_ X ) |
| 73 | 41 | rexrd | |- ( ph -> S e. RR* ) |
| 74 | xrmax1 | |- ( ( A e. RR* /\ ( U - T ) e. RR* ) -> A <_ if ( A <_ ( U - T ) , ( U - T ) , A ) ) |
|
| 75 | 22 17 74 | syl2anc | |- ( ph -> A <_ if ( A <_ ( U - T ) , ( U - T ) , A ) ) |
| 76 | 22 23 73 75 52 | xrlelttrd | |- ( ph -> A < S ) |
| 77 | elioo2 | |- ( ( A e. RR* /\ U e. RR* ) -> ( S e. ( A (,) U ) <-> ( S e. RR /\ A < S /\ S < U ) ) ) |
|
| 78 | 22 24 77 | syl2anc | |- ( ph -> ( S e. ( A (,) U ) <-> ( S e. RR /\ A < S /\ S < U ) ) ) |
| 79 | 41 76 45 78 | mpbir3and | |- ( ph -> S e. ( A (,) U ) ) |
| 80 | 72 79 | sseldd | |- ( ph -> S e. X ) |
| 81 | eldifsn | |- ( S e. ( X \ { U } ) <-> ( S e. X /\ S =/= U ) ) |
|
| 82 | 80 46 81 | sylanbrc | |- ( ph -> S e. ( X \ { U } ) ) |
| 83 | 66 9 82 | rspcdva | |- ( ph -> ( ( S =/= U /\ ( abs ` ( S - U ) ) < T ) -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
| 84 | 46 55 83 | mp2and | |- ( ph -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) |
| 85 | 1 80 | ffvelcdmd | |- ( ph -> ( F ` S ) e. RR ) |
| 86 | 4 3 | sseldd | |- ( ph -> U e. X ) |
| 87 | 1 86 | ffvelcdmd | |- ( ph -> ( F ` U ) e. RR ) |
| 88 | 85 87 | resubcld | |- ( ph -> ( ( F ` S ) - ( F ` U ) ) e. RR ) |
| 89 | 41 14 | resubcld | |- ( ph -> ( S - U ) e. RR ) |
| 90 | 41 | recnd | |- ( ph -> S e. CC ) |
| 91 | 14 | recnd | |- ( ph -> U e. CC ) |
| 92 | 90 91 46 | subne0d | |- ( ph -> ( S - U ) =/= 0 ) |
| 93 | 88 89 92 | redivcld | |- ( ph -> ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) e. RR ) |
| 94 | dvfre | |- ( ( F : X --> RR /\ X C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
|
| 95 | 1 2 94 | syl2anc | |- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 96 | 95 5 | ffvelcdmd | |- ( ph -> ( ( RR _D F ) ` U ) e. RR ) |
| 97 | 96 | renegcld | |- ( ph -> -u ( ( RR _D F ) ` U ) e. RR ) |
| 98 | 93 96 97 | absdifltd | |- ( ph -> ( ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) <-> ( ( ( ( RR _D F ) ` U ) - -u ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) /\ ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < ( ( ( RR _D F ) ` U ) + -u ( ( RR _D F ) ` U ) ) ) ) ) |
| 99 | 84 98 | mpbid | |- ( ph -> ( ( ( ( RR _D F ) ` U ) - -u ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) /\ ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < ( ( ( RR _D F ) ` U ) + -u ( ( RR _D F ) ` U ) ) ) ) |
| 100 | 99 | simprd | |- ( ph -> ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < ( ( ( RR _D F ) ` U ) + -u ( ( RR _D F ) ` U ) ) ) |
| 101 | 96 | recnd | |- ( ph -> ( ( RR _D F ) ` U ) e. CC ) |
| 102 | 101 | negidd | |- ( ph -> ( ( ( RR _D F ) ` U ) + -u ( ( RR _D F ) ` U ) ) = 0 ) |
| 103 | 100 102 | breqtrd | |- ( ph -> ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < 0 ) |
| 104 | 93 | lt0neg1d | |- ( ph -> ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < 0 <-> 0 < -u ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) ) |
| 105 | 103 104 | mpbid | |- ( ph -> 0 < -u ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
| 106 | 88 | recnd | |- ( ph -> ( ( F ` S ) - ( F ` U ) ) e. CC ) |
| 107 | 89 | recnd | |- ( ph -> ( S - U ) e. CC ) |
| 108 | 106 107 92 | divneg2d | |- ( ph -> -u ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) = ( ( ( F ` S ) - ( F ` U ) ) / -u ( S - U ) ) ) |
| 109 | 105 108 | breqtrd | |- ( ph -> 0 < ( ( ( F ` S ) - ( F ` U ) ) / -u ( S - U ) ) ) |
| 110 | 89 | renegcld | |- ( ph -> -u ( S - U ) e. RR ) |
| 111 | 41 14 | posdifd | |- ( ph -> ( S < U <-> 0 < ( U - S ) ) ) |
| 112 | 45 111 | mpbid | |- ( ph -> 0 < ( U - S ) ) |
| 113 | 90 91 | negsubdi2d | |- ( ph -> -u ( S - U ) = ( U - S ) ) |
| 114 | 112 113 | breqtrrd | |- ( ph -> 0 < -u ( S - U ) ) |
| 115 | gt0div | |- ( ( ( ( F ` S ) - ( F ` U ) ) e. RR /\ -u ( S - U ) e. RR /\ 0 < -u ( S - U ) ) -> ( 0 < ( ( F ` S ) - ( F ` U ) ) <-> 0 < ( ( ( F ` S ) - ( F ` U ) ) / -u ( S - U ) ) ) ) |
|
| 116 | 88 110 114 115 | syl3anc | |- ( ph -> ( 0 < ( ( F ` S ) - ( F ` U ) ) <-> 0 < ( ( ( F ` S ) - ( F ` U ) ) / -u ( S - U ) ) ) ) |
| 117 | 109 116 | mpbird | |- ( ph -> 0 < ( ( F ` S ) - ( F ` U ) ) ) |
| 118 | 87 85 | posdifd | |- ( ph -> ( ( F ` U ) < ( F ` S ) <-> 0 < ( ( F ` S ) - ( F ` U ) ) ) ) |
| 119 | 117 118 | mpbird | |- ( ph -> ( F ` U ) < ( F ` S ) ) |
| 120 | fveq2 | |- ( y = S -> ( F ` y ) = ( F ` S ) ) |
|
| 121 | 120 | breq1d | |- ( y = S -> ( ( F ` y ) <_ ( F ` U ) <-> ( F ` S ) <_ ( F ` U ) ) ) |
| 122 | 121 6 79 | rspcdva | |- ( ph -> ( F ` S ) <_ ( F ` U ) ) |
| 123 | 85 87 122 | lensymd | |- ( ph -> -. ( F ` U ) < ( F ` S ) ) |
| 124 | 119 123 | pm2.65i | |- -. ph |