This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One-sided version of dvferm . A point U which is the local maximum of its left neighborhood has derivative at least zero. (Contributed by Mario Carneiro, 24-Feb-2015) (Proof shortened by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvferm.a | |- ( ph -> F : X --> RR ) |
|
| dvferm.b | |- ( ph -> X C_ RR ) |
||
| dvferm.u | |- ( ph -> U e. ( A (,) B ) ) |
||
| dvferm.s | |- ( ph -> ( A (,) B ) C_ X ) |
||
| dvferm.d | |- ( ph -> U e. dom ( RR _D F ) ) |
||
| dvferm2.r | |- ( ph -> A. y e. ( A (,) U ) ( F ` y ) <_ ( F ` U ) ) |
||
| Assertion | dvferm2 | |- ( ph -> 0 <_ ( ( RR _D F ) ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvferm.a | |- ( ph -> F : X --> RR ) |
|
| 2 | dvferm.b | |- ( ph -> X C_ RR ) |
|
| 3 | dvferm.u | |- ( ph -> U e. ( A (,) B ) ) |
|
| 4 | dvferm.s | |- ( ph -> ( A (,) B ) C_ X ) |
|
| 5 | dvferm.d | |- ( ph -> U e. dom ( RR _D F ) ) |
|
| 6 | dvferm2.r | |- ( ph -> A. y e. ( A (,) U ) ( F ` y ) <_ ( F ` U ) ) |
|
| 7 | fveq2 | |- ( x = z -> ( F ` x ) = ( F ` z ) ) |
|
| 8 | 7 | oveq1d | |- ( x = z -> ( ( F ` x ) - ( F ` U ) ) = ( ( F ` z ) - ( F ` U ) ) ) |
| 9 | oveq1 | |- ( x = z -> ( x - U ) = ( z - U ) ) |
|
| 10 | 8 9 | oveq12d | |- ( x = z -> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) = ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) ) |
| 11 | eqid | |- ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) = ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) |
|
| 12 | ovex | |- ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) e. _V |
|
| 13 | 10 11 12 | fvmpt | |- ( z e. ( X \ { U } ) -> ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) = ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) ) |
| 14 | 13 | fvoveq1d | |- ( z e. ( X \ { U } ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) = ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) ) |
| 15 | id | |- ( y = -u ( ( RR _D F ) ` U ) -> y = -u ( ( RR _D F ) ` U ) ) |
|
| 16 | 14 15 | breqan12rd | |- ( ( y = -u ( ( RR _D F ) ` U ) /\ z e. ( X \ { U } ) ) -> ( ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y <-> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
| 17 | 16 | imbi2d | |- ( ( y = -u ( ( RR _D F ) ` U ) /\ z e. ( X \ { U } ) ) -> ( ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y ) <-> ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) ) |
| 18 | 17 | ralbidva | |- ( y = -u ( ( RR _D F ) ` U ) -> ( A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y ) <-> A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) ) |
| 19 | 18 | rexbidv | |- ( y = -u ( ( RR _D F ) ` U ) -> ( E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y ) <-> E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) ) |
| 20 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 21 | ffun | |- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> Fun ( RR _D F ) ) |
|
| 22 | funfvbrb | |- ( Fun ( RR _D F ) -> ( U e. dom ( RR _D F ) <-> U ( RR _D F ) ( ( RR _D F ) ` U ) ) ) |
|
| 23 | 20 21 22 | mp2b | |- ( U e. dom ( RR _D F ) <-> U ( RR _D F ) ( ( RR _D F ) ` U ) ) |
| 24 | 5 23 | sylib | |- ( ph -> U ( RR _D F ) ( ( RR _D F ) ` U ) ) |
| 25 | eqid | |- ( ( TopOpen ` CCfld ) |`t RR ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 26 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 27 | ax-resscn | |- RR C_ CC |
|
| 28 | 27 | a1i | |- ( ph -> RR C_ CC ) |
| 29 | fss | |- ( ( F : X --> RR /\ RR C_ CC ) -> F : X --> CC ) |
|
| 30 | 1 27 29 | sylancl | |- ( ph -> F : X --> CC ) |
| 31 | 25 26 11 28 30 2 | eldv | |- ( ph -> ( U ( RR _D F ) ( ( RR _D F ) ` U ) <-> ( U e. ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` X ) /\ ( ( RR _D F ) ` U ) e. ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) limCC U ) ) ) ) |
| 32 | 24 31 | mpbid | |- ( ph -> ( U e. ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` X ) /\ ( ( RR _D F ) ` U ) e. ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) limCC U ) ) ) |
| 33 | 32 | simprd | |- ( ph -> ( ( RR _D F ) ` U ) e. ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) limCC U ) ) |
| 34 | 33 | adantr | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> ( ( RR _D F ) ` U ) e. ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) limCC U ) ) |
| 35 | 2 27 | sstrdi | |- ( ph -> X C_ CC ) |
| 36 | 4 3 | sseldd | |- ( ph -> U e. X ) |
| 37 | 30 35 36 | dvlem | |- ( ( ph /\ x e. ( X \ { U } ) ) -> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) e. CC ) |
| 38 | 37 | fmpttd | |- ( ph -> ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) : ( X \ { U } ) --> CC ) |
| 39 | 38 | adantr | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) : ( X \ { U } ) --> CC ) |
| 40 | 35 | adantr | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> X C_ CC ) |
| 41 | 40 | ssdifssd | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> ( X \ { U } ) C_ CC ) |
| 42 | 35 36 | sseldd | |- ( ph -> U e. CC ) |
| 43 | 42 | adantr | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> U e. CC ) |
| 44 | 39 41 43 | ellimc3 | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> ( ( ( RR _D F ) ` U ) e. ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) limCC U ) <-> ( ( ( RR _D F ) ` U ) e. CC /\ A. y e. RR+ E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y ) ) ) ) |
| 45 | 34 44 | mpbid | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> ( ( ( RR _D F ) ` U ) e. CC /\ A. y e. RR+ E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y ) ) ) |
| 46 | 45 | simprd | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> A. y e. RR+ E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y ) ) |
| 47 | dvfre | |- ( ( F : X --> RR /\ X C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
|
| 48 | 1 2 47 | syl2anc | |- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 49 | 48 5 | ffvelcdmd | |- ( ph -> ( ( RR _D F ) ` U ) e. RR ) |
| 50 | 49 | adantr | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> ( ( RR _D F ) ` U ) e. RR ) |
| 51 | 50 | renegcld | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> -u ( ( RR _D F ) ` U ) e. RR ) |
| 52 | 49 | lt0neg1d | |- ( ph -> ( ( ( RR _D F ) ` U ) < 0 <-> 0 < -u ( ( RR _D F ) ` U ) ) ) |
| 53 | 52 | biimpa | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> 0 < -u ( ( RR _D F ) ` U ) ) |
| 54 | 51 53 | elrpd | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> -u ( ( RR _D F ) ` U ) e. RR+ ) |
| 55 | 19 46 54 | rspcdva | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
| 56 | 1 | ad3antrrr | |- ( ( ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) -> F : X --> RR ) |
| 57 | 2 | ad3antrrr | |- ( ( ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) -> X C_ RR ) |
| 58 | 3 | ad3antrrr | |- ( ( ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) -> U e. ( A (,) B ) ) |
| 59 | 4 | ad3antrrr | |- ( ( ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) -> ( A (,) B ) C_ X ) |
| 60 | 5 | ad3antrrr | |- ( ( ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) -> U e. dom ( RR _D F ) ) |
| 61 | 6 | ad3antrrr | |- ( ( ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) -> A. y e. ( A (,) U ) ( F ` y ) <_ ( F ` U ) ) |
| 62 | simpllr | |- ( ( ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) -> ( ( RR _D F ) ` U ) < 0 ) |
|
| 63 | simplr | |- ( ( ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) -> u e. RR+ ) |
|
| 64 | simpr | |- ( ( ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) -> A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
|
| 65 | eqid | |- ( ( if ( A <_ ( U - u ) , ( U - u ) , A ) + U ) / 2 ) = ( ( if ( A <_ ( U - u ) , ( U - u ) , A ) + U ) / 2 ) |
|
| 66 | 56 57 58 59 60 61 62 63 64 65 | dvferm2lem | |- -. ( ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
| 67 | 66 | imnani | |- ( ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) /\ u e. RR+ ) -> -. A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
| 68 | 67 | nrexdv | |- ( ( ph /\ ( ( RR _D F ) ` U ) < 0 ) -> -. E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
| 69 | 55 68 | pm2.65da | |- ( ph -> -. ( ( RR _D F ) ` U ) < 0 ) |
| 70 | 0re | |- 0 e. RR |
|
| 71 | lenlt | |- ( ( 0 e. RR /\ ( ( RR _D F ) ` U ) e. RR ) -> ( 0 <_ ( ( RR _D F ) ` U ) <-> -. ( ( RR _D F ) ` U ) < 0 ) ) |
|
| 72 | 70 49 71 | sylancr | |- ( ph -> ( 0 <_ ( ( RR _D F ) ` U ) <-> -. ( ( RR _D F ) ` U ) < 0 ) ) |
| 73 | 69 72 | mpbird | |- ( ph -> 0 <_ ( ( RR _D F ) ` U ) ) |