This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Fermat's theorem on stationary points. A point U which is a local maximum has derivative equal to zero. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvferm.a | |- ( ph -> F : X --> RR ) |
|
| dvferm.b | |- ( ph -> X C_ RR ) |
||
| dvferm.u | |- ( ph -> U e. ( A (,) B ) ) |
||
| dvferm.s | |- ( ph -> ( A (,) B ) C_ X ) |
||
| dvferm.d | |- ( ph -> U e. dom ( RR _D F ) ) |
||
| dvferm.r | |- ( ph -> A. y e. ( A (,) B ) ( F ` y ) <_ ( F ` U ) ) |
||
| Assertion | dvferm | |- ( ph -> ( ( RR _D F ) ` U ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvferm.a | |- ( ph -> F : X --> RR ) |
|
| 2 | dvferm.b | |- ( ph -> X C_ RR ) |
|
| 3 | dvferm.u | |- ( ph -> U e. ( A (,) B ) ) |
|
| 4 | dvferm.s | |- ( ph -> ( A (,) B ) C_ X ) |
|
| 5 | dvferm.d | |- ( ph -> U e. dom ( RR _D F ) ) |
|
| 6 | dvferm.r | |- ( ph -> A. y e. ( A (,) B ) ( F ` y ) <_ ( F ` U ) ) |
|
| 7 | ne0i | |- ( U e. ( A (,) B ) -> ( A (,) B ) =/= (/) ) |
|
| 8 | ndmioo | |- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) ) |
|
| 9 | 8 | necon1ai | |- ( ( A (,) B ) =/= (/) -> ( A e. RR* /\ B e. RR* ) ) |
| 10 | 3 7 9 | 3syl | |- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
| 11 | 10 | simpld | |- ( ph -> A e. RR* ) |
| 12 | ioossre | |- ( A (,) B ) C_ RR |
|
| 13 | 12 3 | sselid | |- ( ph -> U e. RR ) |
| 14 | 13 | rexrd | |- ( ph -> U e. RR* ) |
| 15 | eliooord | |- ( U e. ( A (,) B ) -> ( A < U /\ U < B ) ) |
|
| 16 | 3 15 | syl | |- ( ph -> ( A < U /\ U < B ) ) |
| 17 | 16 | simpld | |- ( ph -> A < U ) |
| 18 | 11 14 17 | xrltled | |- ( ph -> A <_ U ) |
| 19 | iooss1 | |- ( ( A e. RR* /\ A <_ U ) -> ( U (,) B ) C_ ( A (,) B ) ) |
|
| 20 | 11 18 19 | syl2anc | |- ( ph -> ( U (,) B ) C_ ( A (,) B ) ) |
| 21 | ssralv | |- ( ( U (,) B ) C_ ( A (,) B ) -> ( A. y e. ( A (,) B ) ( F ` y ) <_ ( F ` U ) -> A. y e. ( U (,) B ) ( F ` y ) <_ ( F ` U ) ) ) |
|
| 22 | 20 6 21 | sylc | |- ( ph -> A. y e. ( U (,) B ) ( F ` y ) <_ ( F ` U ) ) |
| 23 | 1 2 3 4 5 22 | dvferm1 | |- ( ph -> ( ( RR _D F ) ` U ) <_ 0 ) |
| 24 | 10 | simprd | |- ( ph -> B e. RR* ) |
| 25 | 16 | simprd | |- ( ph -> U < B ) |
| 26 | 14 24 25 | xrltled | |- ( ph -> U <_ B ) |
| 27 | iooss2 | |- ( ( B e. RR* /\ U <_ B ) -> ( A (,) U ) C_ ( A (,) B ) ) |
|
| 28 | 24 26 27 | syl2anc | |- ( ph -> ( A (,) U ) C_ ( A (,) B ) ) |
| 29 | ssralv | |- ( ( A (,) U ) C_ ( A (,) B ) -> ( A. y e. ( A (,) B ) ( F ` y ) <_ ( F ` U ) -> A. y e. ( A (,) U ) ( F ` y ) <_ ( F ` U ) ) ) |
|
| 30 | 28 6 29 | sylc | |- ( ph -> A. y e. ( A (,) U ) ( F ` y ) <_ ( F ` U ) ) |
| 31 | 1 2 3 4 5 30 | dvferm2 | |- ( ph -> 0 <_ ( ( RR _D F ) ` U ) ) |
| 32 | dvfre | |- ( ( F : X --> RR /\ X C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
|
| 33 | 1 2 32 | syl2anc | |- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 34 | 33 5 | ffvelcdmd | |- ( ph -> ( ( RR _D F ) ` U ) e. RR ) |
| 35 | 0re | |- 0 e. RR |
|
| 36 | letri3 | |- ( ( ( ( RR _D F ) ` U ) e. RR /\ 0 e. RR ) -> ( ( ( RR _D F ) ` U ) = 0 <-> ( ( ( RR _D F ) ` U ) <_ 0 /\ 0 <_ ( ( RR _D F ) ` U ) ) ) ) |
|
| 37 | 34 35 36 | sylancl | |- ( ph -> ( ( ( RR _D F ) ` U ) = 0 <-> ( ( ( RR _D F ) ` U ) <_ 0 /\ 0 <_ ( ( RR _D F ) ` U ) ) ) ) |
| 38 | 23 31 37 | mpbir2and | |- ( ph -> ( ( RR _D F ) ` U ) = 0 ) |