This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulcncff.f | |- ( ph -> F e. ( X -cn-> CC ) ) |
|
| mulcncff.g | |- ( ph -> G e. ( X -cn-> CC ) ) |
||
| Assertion | mulcncff | |- ( ph -> ( F oF x. G ) e. ( X -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcncff.f | |- ( ph -> F e. ( X -cn-> CC ) ) |
|
| 2 | mulcncff.g | |- ( ph -> G e. ( X -cn-> CC ) ) |
|
| 3 | cncfrss | |- ( F e. ( X -cn-> CC ) -> X C_ CC ) |
|
| 4 | cnex | |- CC e. _V |
|
| 5 | 4 | ssex | |- ( X C_ CC -> X e. _V ) |
| 6 | 1 3 5 | 3syl | |- ( ph -> X e. _V ) |
| 7 | cncff | |- ( F e. ( X -cn-> CC ) -> F : X --> CC ) |
|
| 8 | 1 7 | syl | |- ( ph -> F : X --> CC ) |
| 9 | 8 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( F ` x ) e. CC ) |
| 10 | cncff | |- ( G e. ( X -cn-> CC ) -> G : X --> CC ) |
|
| 11 | 2 10 | syl | |- ( ph -> G : X --> CC ) |
| 12 | 11 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( G ` x ) e. CC ) |
| 13 | 8 | feqmptd | |- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
| 14 | 11 | feqmptd | |- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
| 15 | 6 9 12 13 14 | offval2 | |- ( ph -> ( F oF x. G ) = ( x e. X |-> ( ( F ` x ) x. ( G ` x ) ) ) ) |
| 16 | 13 1 | eqeltrrd | |- ( ph -> ( x e. X |-> ( F ` x ) ) e. ( X -cn-> CC ) ) |
| 17 | 14 2 | eqeltrrd | |- ( ph -> ( x e. X |-> ( G ` x ) ) e. ( X -cn-> CC ) ) |
| 18 | 16 17 | mulcncf | |- ( ph -> ( x e. X |-> ( ( F ` x ) x. ( G ` x ) ) ) e. ( X -cn-> CC ) ) |
| 19 | 15 18 | eqeltrd | |- ( ph -> ( F oF x. G ) e. ( X -cn-> CC ) ) |