This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cdainflem | |- ( ( A u. B ) ~~ _om -> ( A ~~ _om \/ B ~~ _om ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi2 | |- ( ( A ~< _om /\ B ~< _om ) -> ( A u. B ) ~< _om ) |
|
| 2 | sdomnen | |- ( ( A u. B ) ~< _om -> -. ( A u. B ) ~~ _om ) |
|
| 3 | 1 2 | syl | |- ( ( A ~< _om /\ B ~< _om ) -> -. ( A u. B ) ~~ _om ) |
| 4 | 3 | con2i | |- ( ( A u. B ) ~~ _om -> -. ( A ~< _om /\ B ~< _om ) ) |
| 5 | ianor | |- ( -. ( A ~< _om /\ B ~< _om ) <-> ( -. A ~< _om \/ -. B ~< _om ) ) |
|
| 6 | relen | |- Rel ~~ |
|
| 7 | 6 | brrelex1i | |- ( ( A u. B ) ~~ _om -> ( A u. B ) e. _V ) |
| 8 | ssun1 | |- A C_ ( A u. B ) |
|
| 9 | ssdomg | |- ( ( A u. B ) e. _V -> ( A C_ ( A u. B ) -> A ~<_ ( A u. B ) ) ) |
|
| 10 | 7 8 9 | mpisyl | |- ( ( A u. B ) ~~ _om -> A ~<_ ( A u. B ) ) |
| 11 | domentr | |- ( ( A ~<_ ( A u. B ) /\ ( A u. B ) ~~ _om ) -> A ~<_ _om ) |
|
| 12 | 10 11 | mpancom | |- ( ( A u. B ) ~~ _om -> A ~<_ _om ) |
| 13 | 12 | anim1i | |- ( ( ( A u. B ) ~~ _om /\ -. A ~< _om ) -> ( A ~<_ _om /\ -. A ~< _om ) ) |
| 14 | bren2 | |- ( A ~~ _om <-> ( A ~<_ _om /\ -. A ~< _om ) ) |
|
| 15 | 13 14 | sylibr | |- ( ( ( A u. B ) ~~ _om /\ -. A ~< _om ) -> A ~~ _om ) |
| 16 | 15 | ex | |- ( ( A u. B ) ~~ _om -> ( -. A ~< _om -> A ~~ _om ) ) |
| 17 | ssun2 | |- B C_ ( A u. B ) |
|
| 18 | ssdomg | |- ( ( A u. B ) e. _V -> ( B C_ ( A u. B ) -> B ~<_ ( A u. B ) ) ) |
|
| 19 | 7 17 18 | mpisyl | |- ( ( A u. B ) ~~ _om -> B ~<_ ( A u. B ) ) |
| 20 | domentr | |- ( ( B ~<_ ( A u. B ) /\ ( A u. B ) ~~ _om ) -> B ~<_ _om ) |
|
| 21 | 19 20 | mpancom | |- ( ( A u. B ) ~~ _om -> B ~<_ _om ) |
| 22 | 21 | anim1i | |- ( ( ( A u. B ) ~~ _om /\ -. B ~< _om ) -> ( B ~<_ _om /\ -. B ~< _om ) ) |
| 23 | bren2 | |- ( B ~~ _om <-> ( B ~<_ _om /\ -. B ~< _om ) ) |
|
| 24 | 22 23 | sylibr | |- ( ( ( A u. B ) ~~ _om /\ -. B ~< _om ) -> B ~~ _om ) |
| 25 | 24 | ex | |- ( ( A u. B ) ~~ _om -> ( -. B ~< _om -> B ~~ _om ) ) |
| 26 | 16 25 | orim12d | |- ( ( A u. B ) ~~ _om -> ( ( -. A ~< _om \/ -. B ~< _om ) -> ( A ~~ _om \/ B ~~ _om ) ) ) |
| 27 | 5 26 | biimtrid | |- ( ( A u. B ) ~~ _om -> ( -. ( A ~< _om /\ B ~< _om ) -> ( A ~~ _om \/ B ~~ _om ) ) ) |
| 28 | 4 27 | mpd | |- ( ( A u. B ) ~~ _om -> ( A ~~ _om \/ B ~~ _om ) ) |