This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zeqzmulgcd | |- ( ( A e. ZZ /\ B e. ZZ ) -> E. n e. ZZ A = ( n x. ( A gcd B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcddvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 2 | gcdcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
|
| 3 | 2 | nn0zd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
| 4 | simpl | |- ( ( A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
|
| 5 | divides | |- ( ( ( A gcd B ) e. ZZ /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> E. n e. ZZ ( n x. ( A gcd B ) ) = A ) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A <-> E. n e. ZZ ( n x. ( A gcd B ) ) = A ) ) |
| 7 | eqcom | |- ( ( n x. ( A gcd B ) ) = A <-> A = ( n x. ( A gcd B ) ) ) |
|
| 8 | 7 | a1i | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( n x. ( A gcd B ) ) = A <-> A = ( n x. ( A gcd B ) ) ) ) |
| 9 | 8 | rexbidv | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( E. n e. ZZ ( n x. ( A gcd B ) ) = A <-> E. n e. ZZ A = ( n x. ( A gcd B ) ) ) ) |
| 10 | 9 | biimpd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( E. n e. ZZ ( n x. ( A gcd B ) ) = A -> E. n e. ZZ A = ( n x. ( A gcd B ) ) ) ) |
| 11 | 6 10 | sylbid | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A -> E. n e. ZZ A = ( n x. ( A gcd B ) ) ) ) |
| 12 | 11 | adantrd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) -> E. n e. ZZ A = ( n x. ( A gcd B ) ) ) ) |
| 13 | 1 12 | mpd | |- ( ( A e. ZZ /\ B e. ZZ ) -> E. n e. ZZ A = ( n x. ( A gcd B ) ) ) |