This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011) (Revised by AV, 2-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem8.1 | |- N e. ZZ |
|
| divalglem8.2 | |- D e. ZZ |
||
| divalglem8.3 | |- D =/= 0 |
||
| divalglem8.4 | |- S = { r e. NN0 | D || ( N - r ) } |
||
| divalglem9.5 | |- R = inf ( S , RR , < ) |
||
| Assertion | divalglem9 | |- E! x e. S x < ( abs ` D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem8.1 | |- N e. ZZ |
|
| 2 | divalglem8.2 | |- D e. ZZ |
|
| 3 | divalglem8.3 | |- D =/= 0 |
|
| 4 | divalglem8.4 | |- S = { r e. NN0 | D || ( N - r ) } |
|
| 5 | divalglem9.5 | |- R = inf ( S , RR , < ) |
|
| 6 | 1 2 3 4 | divalglem2 | |- inf ( S , RR , < ) e. S |
| 7 | 5 6 | eqeltri | |- R e. S |
| 8 | 1 2 3 4 5 | divalglem5 | |- ( 0 <_ R /\ R < ( abs ` D ) ) |
| 9 | 8 | simpri | |- R < ( abs ` D ) |
| 10 | breq1 | |- ( x = R -> ( x < ( abs ` D ) <-> R < ( abs ` D ) ) ) |
|
| 11 | 10 | rspcev | |- ( ( R e. S /\ R < ( abs ` D ) ) -> E. x e. S x < ( abs ` D ) ) |
| 12 | 7 9 11 | mp2an | |- E. x e. S x < ( abs ` D ) |
| 13 | oveq2 | |- ( r = x -> ( N - r ) = ( N - x ) ) |
|
| 14 | 13 | breq2d | |- ( r = x -> ( D || ( N - r ) <-> D || ( N - x ) ) ) |
| 15 | 14 4 | elrab2 | |- ( x e. S <-> ( x e. NN0 /\ D || ( N - x ) ) ) |
| 16 | 15 | simplbi | |- ( x e. S -> x e. NN0 ) |
| 17 | 16 | nn0zd | |- ( x e. S -> x e. ZZ ) |
| 18 | oveq2 | |- ( r = y -> ( N - r ) = ( N - y ) ) |
|
| 19 | 18 | breq2d | |- ( r = y -> ( D || ( N - r ) <-> D || ( N - y ) ) ) |
| 20 | 19 4 | elrab2 | |- ( y e. S <-> ( y e. NN0 /\ D || ( N - y ) ) ) |
| 21 | 20 | simplbi | |- ( y e. S -> y e. NN0 ) |
| 22 | 21 | nn0zd | |- ( y e. S -> y e. ZZ ) |
| 23 | zsubcl | |- ( ( N e. ZZ /\ x e. ZZ ) -> ( N - x ) e. ZZ ) |
|
| 24 | 1 23 | mpan | |- ( x e. ZZ -> ( N - x ) e. ZZ ) |
| 25 | zsubcl | |- ( ( N e. ZZ /\ y e. ZZ ) -> ( N - y ) e. ZZ ) |
|
| 26 | 1 25 | mpan | |- ( y e. ZZ -> ( N - y ) e. ZZ ) |
| 27 | 24 26 | anim12i | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( N - x ) e. ZZ /\ ( N - y ) e. ZZ ) ) |
| 28 | 17 22 27 | syl2an | |- ( ( x e. S /\ y e. S ) -> ( ( N - x ) e. ZZ /\ ( N - y ) e. ZZ ) ) |
| 29 | 15 | simprbi | |- ( x e. S -> D || ( N - x ) ) |
| 30 | 20 | simprbi | |- ( y e. S -> D || ( N - y ) ) |
| 31 | 29 30 | anim12i | |- ( ( x e. S /\ y e. S ) -> ( D || ( N - x ) /\ D || ( N - y ) ) ) |
| 32 | dvds2sub | |- ( ( D e. ZZ /\ ( N - x ) e. ZZ /\ ( N - y ) e. ZZ ) -> ( ( D || ( N - x ) /\ D || ( N - y ) ) -> D || ( ( N - x ) - ( N - y ) ) ) ) |
|
| 33 | 2 32 | mp3an1 | |- ( ( ( N - x ) e. ZZ /\ ( N - y ) e. ZZ ) -> ( ( D || ( N - x ) /\ D || ( N - y ) ) -> D || ( ( N - x ) - ( N - y ) ) ) ) |
| 34 | 28 31 33 | sylc | |- ( ( x e. S /\ y e. S ) -> D || ( ( N - x ) - ( N - y ) ) ) |
| 35 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 36 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 37 | 1 | zrei | |- N e. RR |
| 38 | 37 | recni | |- N e. CC |
| 39 | 38 | subidi | |- ( N - N ) = 0 |
| 40 | 39 | oveq1i | |- ( ( N - N ) - ( x - y ) ) = ( 0 - ( x - y ) ) |
| 41 | 0cn | |- 0 e. CC |
|
| 42 | subsub2 | |- ( ( 0 e. CC /\ x e. CC /\ y e. CC ) -> ( 0 - ( x - y ) ) = ( 0 + ( y - x ) ) ) |
|
| 43 | 41 42 | mp3an1 | |- ( ( x e. CC /\ y e. CC ) -> ( 0 - ( x - y ) ) = ( 0 + ( y - x ) ) ) |
| 44 | 40 43 | eqtrid | |- ( ( x e. CC /\ y e. CC ) -> ( ( N - N ) - ( x - y ) ) = ( 0 + ( y - x ) ) ) |
| 45 | sub4 | |- ( ( ( N e. CC /\ N e. CC ) /\ ( x e. CC /\ y e. CC ) ) -> ( ( N - N ) - ( x - y ) ) = ( ( N - x ) - ( N - y ) ) ) |
|
| 46 | 38 38 45 | mpanl12 | |- ( ( x e. CC /\ y e. CC ) -> ( ( N - N ) - ( x - y ) ) = ( ( N - x ) - ( N - y ) ) ) |
| 47 | subcl | |- ( ( y e. CC /\ x e. CC ) -> ( y - x ) e. CC ) |
|
| 48 | 47 | ancoms | |- ( ( x e. CC /\ y e. CC ) -> ( y - x ) e. CC ) |
| 49 | 48 | addlidd | |- ( ( x e. CC /\ y e. CC ) -> ( 0 + ( y - x ) ) = ( y - x ) ) |
| 50 | 44 46 49 | 3eqtr3d | |- ( ( x e. CC /\ y e. CC ) -> ( ( N - x ) - ( N - y ) ) = ( y - x ) ) |
| 51 | 35 36 50 | syl2an | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( N - x ) - ( N - y ) ) = ( y - x ) ) |
| 52 | 17 22 51 | syl2an | |- ( ( x e. S /\ y e. S ) -> ( ( N - x ) - ( N - y ) ) = ( y - x ) ) |
| 53 | 52 | breq2d | |- ( ( x e. S /\ y e. S ) -> ( D || ( ( N - x ) - ( N - y ) ) <-> D || ( y - x ) ) ) |
| 54 | 34 53 | mpbid | |- ( ( x e. S /\ y e. S ) -> D || ( y - x ) ) |
| 55 | zsubcl | |- ( ( y e. ZZ /\ x e. ZZ ) -> ( y - x ) e. ZZ ) |
|
| 56 | 55 | ancoms | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( y - x ) e. ZZ ) |
| 57 | absdvdsb | |- ( ( D e. ZZ /\ ( y - x ) e. ZZ ) -> ( D || ( y - x ) <-> ( abs ` D ) || ( y - x ) ) ) |
|
| 58 | 2 56 57 | sylancr | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( D || ( y - x ) <-> ( abs ` D ) || ( y - x ) ) ) |
| 59 | 17 22 58 | syl2an | |- ( ( x e. S /\ y e. S ) -> ( D || ( y - x ) <-> ( abs ` D ) || ( y - x ) ) ) |
| 60 | 54 59 | mpbid | |- ( ( x e. S /\ y e. S ) -> ( abs ` D ) || ( y - x ) ) |
| 61 | nnabscl | |- ( ( D e. ZZ /\ D =/= 0 ) -> ( abs ` D ) e. NN ) |
|
| 62 | 2 3 61 | mp2an | |- ( abs ` D ) e. NN |
| 63 | 62 | nnzi | |- ( abs ` D ) e. ZZ |
| 64 | divides | |- ( ( ( abs ` D ) e. ZZ /\ ( y - x ) e. ZZ ) -> ( ( abs ` D ) || ( y - x ) <-> E. k e. ZZ ( k x. ( abs ` D ) ) = ( y - x ) ) ) |
|
| 65 | 63 56 64 | sylancr | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( abs ` D ) || ( y - x ) <-> E. k e. ZZ ( k x. ( abs ` D ) ) = ( y - x ) ) ) |
| 66 | 17 22 65 | syl2an | |- ( ( x e. S /\ y e. S ) -> ( ( abs ` D ) || ( y - x ) <-> E. k e. ZZ ( k x. ( abs ` D ) ) = ( y - x ) ) ) |
| 67 | 60 66 | mpbid | |- ( ( x e. S /\ y e. S ) -> E. k e. ZZ ( k x. ( abs ` D ) ) = ( y - x ) ) |
| 68 | 67 | adantr | |- ( ( ( x e. S /\ y e. S ) /\ ( x < ( abs ` D ) /\ y < ( abs ` D ) ) ) -> E. k e. ZZ ( k x. ( abs ` D ) ) = ( y - x ) ) |
| 69 | 1 2 3 4 | divalglem8 | |- ( ( ( x e. S /\ y e. S ) /\ ( x < ( abs ` D ) /\ y < ( abs ` D ) ) ) -> ( k e. ZZ -> ( ( k x. ( abs ` D ) ) = ( y - x ) -> x = y ) ) ) |
| 70 | 69 | rexlimdv | |- ( ( ( x e. S /\ y e. S ) /\ ( x < ( abs ` D ) /\ y < ( abs ` D ) ) ) -> ( E. k e. ZZ ( k x. ( abs ` D ) ) = ( y - x ) -> x = y ) ) |
| 71 | 68 70 | mpd | |- ( ( ( x e. S /\ y e. S ) /\ ( x < ( abs ` D ) /\ y < ( abs ` D ) ) ) -> x = y ) |
| 72 | 71 | ex | |- ( ( x e. S /\ y e. S ) -> ( ( x < ( abs ` D ) /\ y < ( abs ` D ) ) -> x = y ) ) |
| 73 | 72 | rgen2 | |- A. x e. S A. y e. S ( ( x < ( abs ` D ) /\ y < ( abs ` D ) ) -> x = y ) |
| 74 | breq1 | |- ( x = y -> ( x < ( abs ` D ) <-> y < ( abs ` D ) ) ) |
|
| 75 | 74 | reu4 | |- ( E! x e. S x < ( abs ` D ) <-> ( E. x e. S x < ( abs ` D ) /\ A. x e. S A. y e. S ( ( x < ( abs ` D ) /\ y < ( abs ` D ) ) -> x = y ) ) ) |
| 76 | 12 73 75 | mpbir2an | |- E! x e. S x < ( abs ` D ) |