This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem7.1 | |- D e. ZZ |
|
| divalglem7.2 | |- D =/= 0 |
||
| Assertion | divalglem7 | |- ( ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) /\ K e. ZZ ) -> ( K =/= 0 -> -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem7.1 | |- D e. ZZ |
|
| 2 | divalglem7.2 | |- D =/= 0 |
|
| 3 | oveq1 | |- ( X = if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) -> ( X + ( K x. ( abs ` D ) ) ) = ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) ) |
|
| 4 | 3 | eleq1d | |- ( X = if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) -> ( ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 5 | 4 | notbid | |- ( X = if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) -> ( -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 6 | 5 | imbi2d | |- ( X = if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) -> ( ( K =/= 0 -> -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) <-> ( K =/= 0 -> -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) ) |
| 7 | neeq1 | |- ( K = if ( K e. ZZ , K , 0 ) -> ( K =/= 0 <-> if ( K e. ZZ , K , 0 ) =/= 0 ) ) |
|
| 8 | oveq1 | |- ( K = if ( K e. ZZ , K , 0 ) -> ( K x. ( abs ` D ) ) = ( if ( K e. ZZ , K , 0 ) x. ( abs ` D ) ) ) |
|
| 9 | 8 | oveq2d | |- ( K = if ( K e. ZZ , K , 0 ) -> ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) = ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( if ( K e. ZZ , K , 0 ) x. ( abs ` D ) ) ) ) |
| 10 | 9 | eleq1d | |- ( K = if ( K e. ZZ , K , 0 ) -> ( ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( if ( K e. ZZ , K , 0 ) x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 11 | 10 | notbid | |- ( K = if ( K e. ZZ , K , 0 ) -> ( -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( if ( K e. ZZ , K , 0 ) x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |
| 12 | 7 11 | imbi12d | |- ( K = if ( K e. ZZ , K , 0 ) -> ( ( K =/= 0 -> -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) <-> ( if ( K e. ZZ , K , 0 ) =/= 0 -> -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( if ( K e. ZZ , K , 0 ) x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) ) |
| 13 | nnabscl | |- ( ( D e. ZZ /\ D =/= 0 ) -> ( abs ` D ) e. NN ) |
|
| 14 | 1 2 13 | mp2an | |- ( abs ` D ) e. NN |
| 15 | 0z | |- 0 e. ZZ |
|
| 16 | 0le0 | |- 0 <_ 0 |
|
| 17 | 14 | nngt0i | |- 0 < ( abs ` D ) |
| 18 | 14 | nnzi | |- ( abs ` D ) e. ZZ |
| 19 | elfzm11 | |- ( ( 0 e. ZZ /\ ( abs ` D ) e. ZZ ) -> ( 0 e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( 0 e. ZZ /\ 0 <_ 0 /\ 0 < ( abs ` D ) ) ) ) |
|
| 20 | 15 18 19 | mp2an | |- ( 0 e. ( 0 ... ( ( abs ` D ) - 1 ) ) <-> ( 0 e. ZZ /\ 0 <_ 0 /\ 0 < ( abs ` D ) ) ) |
| 21 | 15 16 17 20 | mpbir3an | |- 0 e. ( 0 ... ( ( abs ` D ) - 1 ) ) |
| 22 | 21 | elimel | |- if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) |
| 23 | 15 | elimel | |- if ( K e. ZZ , K , 0 ) e. ZZ |
| 24 | 14 22 23 | divalglem6 | |- ( if ( K e. ZZ , K , 0 ) =/= 0 -> -. ( if ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) , X , 0 ) + ( if ( K e. ZZ , K , 0 ) x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) |
| 25 | 6 12 24 | dedth2h | |- ( ( X e. ( 0 ... ( ( abs ` D ) - 1 ) ) /\ K e. ZZ ) -> ( K =/= 0 -> -. ( X + ( K x. ( abs ` D ) ) ) e. ( 0 ... ( ( abs ` D ) - 1 ) ) ) ) |