This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative quadratic form has nonnegative leading coefficient. (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | discr.1 | |- ( ph -> A e. RR ) |
|
| discr.2 | |- ( ph -> B e. RR ) |
||
| discr.3 | |- ( ph -> C e. RR ) |
||
| discr.4 | |- ( ( ph /\ x e. RR ) -> 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
||
| discr1.5 | |- X = if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) |
||
| Assertion | discr1 | |- ( ph -> 0 <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discr.1 | |- ( ph -> A e. RR ) |
|
| 2 | discr.2 | |- ( ph -> B e. RR ) |
|
| 3 | discr.3 | |- ( ph -> C e. RR ) |
|
| 4 | discr.4 | |- ( ( ph /\ x e. RR ) -> 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
|
| 5 | discr1.5 | |- X = if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) |
|
| 6 | oveq1 | |- ( x = X -> ( x ^ 2 ) = ( X ^ 2 ) ) |
|
| 7 | 6 | oveq2d | |- ( x = X -> ( A x. ( x ^ 2 ) ) = ( A x. ( X ^ 2 ) ) ) |
| 8 | oveq2 | |- ( x = X -> ( B x. x ) = ( B x. X ) ) |
|
| 9 | 7 8 | oveq12d | |- ( x = X -> ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) = ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) ) |
| 10 | 9 | oveq1d | |- ( x = X -> ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) ) |
| 11 | 10 | breq2d | |- ( x = X -> ( 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) <-> 0 <_ ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) ) ) |
| 12 | 4 | ralrimiva | |- ( ph -> A. x e. RR 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
| 13 | 12 | adantr | |- ( ( ph /\ A < 0 ) -> A. x e. RR 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
| 14 | 2 | adantr | |- ( ( ph /\ A < 0 ) -> B e. RR ) |
| 15 | 3 | adantr | |- ( ( ph /\ A < 0 ) -> C e. RR ) |
| 16 | 0re | |- 0 e. RR |
|
| 17 | ifcl | |- ( ( C e. RR /\ 0 e. RR ) -> if ( 0 <_ C , C , 0 ) e. RR ) |
|
| 18 | 15 16 17 | sylancl | |- ( ( ph /\ A < 0 ) -> if ( 0 <_ C , C , 0 ) e. RR ) |
| 19 | 14 18 | readdcld | |- ( ( ph /\ A < 0 ) -> ( B + if ( 0 <_ C , C , 0 ) ) e. RR ) |
| 20 | peano2re | |- ( ( B + if ( 0 <_ C , C , 0 ) ) e. RR -> ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) e. RR ) |
|
| 21 | 19 20 | syl | |- ( ( ph /\ A < 0 ) -> ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) e. RR ) |
| 22 | 1 | adantr | |- ( ( ph /\ A < 0 ) -> A e. RR ) |
| 23 | 22 | renegcld | |- ( ( ph /\ A < 0 ) -> -u A e. RR ) |
| 24 | 1 | lt0neg1d | |- ( ph -> ( A < 0 <-> 0 < -u A ) ) |
| 25 | 24 | biimpa | |- ( ( ph /\ A < 0 ) -> 0 < -u A ) |
| 26 | 25 | gt0ne0d | |- ( ( ph /\ A < 0 ) -> -u A =/= 0 ) |
| 27 | 21 23 26 | redivcld | |- ( ( ph /\ A < 0 ) -> ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) e. RR ) |
| 28 | 1re | |- 1 e. RR |
|
| 29 | ifcl | |- ( ( ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) e. RR /\ 1 e. RR ) -> if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) e. RR ) |
|
| 30 | 27 28 29 | sylancl | |- ( ( ph /\ A < 0 ) -> if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) e. RR ) |
| 31 | 5 30 | eqeltrid | |- ( ( ph /\ A < 0 ) -> X e. RR ) |
| 32 | 11 13 31 | rspcdva | |- ( ( ph /\ A < 0 ) -> 0 <_ ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) ) |
| 33 | resqcl | |- ( X e. RR -> ( X ^ 2 ) e. RR ) |
|
| 34 | 31 33 | syl | |- ( ( ph /\ A < 0 ) -> ( X ^ 2 ) e. RR ) |
| 35 | 22 34 | remulcld | |- ( ( ph /\ A < 0 ) -> ( A x. ( X ^ 2 ) ) e. RR ) |
| 36 | 14 31 | remulcld | |- ( ( ph /\ A < 0 ) -> ( B x. X ) e. RR ) |
| 37 | 35 36 | readdcld | |- ( ( ph /\ A < 0 ) -> ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) e. RR ) |
| 38 | 37 15 | readdcld | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) e. RR ) |
| 39 | 22 31 | remulcld | |- ( ( ph /\ A < 0 ) -> ( A x. X ) e. RR ) |
| 40 | 39 19 | readdcld | |- ( ( ph /\ A < 0 ) -> ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) e. RR ) |
| 41 | 40 31 | remulcld | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) e. RR ) |
| 42 | 16 | a1i | |- ( ( ph /\ A < 0 ) -> 0 e. RR ) |
| 43 | 18 31 | remulcld | |- ( ( ph /\ A < 0 ) -> ( if ( 0 <_ C , C , 0 ) x. X ) e. RR ) |
| 44 | max2 | |- ( ( 0 e. RR /\ C e. RR ) -> C <_ if ( 0 <_ C , C , 0 ) ) |
|
| 45 | 16 15 44 | sylancr | |- ( ( ph /\ A < 0 ) -> C <_ if ( 0 <_ C , C , 0 ) ) |
| 46 | max1 | |- ( ( 0 e. RR /\ C e. RR ) -> 0 <_ if ( 0 <_ C , C , 0 ) ) |
|
| 47 | 16 15 46 | sylancr | |- ( ( ph /\ A < 0 ) -> 0 <_ if ( 0 <_ C , C , 0 ) ) |
| 48 | max1 | |- ( ( 1 e. RR /\ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) e. RR ) -> 1 <_ if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) ) |
|
| 49 | 28 27 48 | sylancr | |- ( ( ph /\ A < 0 ) -> 1 <_ if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) ) |
| 50 | 49 5 | breqtrrdi | |- ( ( ph /\ A < 0 ) -> 1 <_ X ) |
| 51 | 18 31 47 50 | lemulge11d | |- ( ( ph /\ A < 0 ) -> if ( 0 <_ C , C , 0 ) <_ ( if ( 0 <_ C , C , 0 ) x. X ) ) |
| 52 | 15 18 43 45 51 | letrd | |- ( ( ph /\ A < 0 ) -> C <_ ( if ( 0 <_ C , C , 0 ) x. X ) ) |
| 53 | 15 43 37 52 | leadd2dd | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) <_ ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + ( if ( 0 <_ C , C , 0 ) x. X ) ) ) |
| 54 | 39 14 | readdcld | |- ( ( ph /\ A < 0 ) -> ( ( A x. X ) + B ) e. RR ) |
| 55 | 54 | recnd | |- ( ( ph /\ A < 0 ) -> ( ( A x. X ) + B ) e. CC ) |
| 56 | 18 | recnd | |- ( ( ph /\ A < 0 ) -> if ( 0 <_ C , C , 0 ) e. CC ) |
| 57 | 31 | recnd | |- ( ( ph /\ A < 0 ) -> X e. CC ) |
| 58 | 55 56 57 | adddird | |- ( ( ph /\ A < 0 ) -> ( ( ( ( A x. X ) + B ) + if ( 0 <_ C , C , 0 ) ) x. X ) = ( ( ( ( A x. X ) + B ) x. X ) + ( if ( 0 <_ C , C , 0 ) x. X ) ) ) |
| 59 | 39 | recnd | |- ( ( ph /\ A < 0 ) -> ( A x. X ) e. CC ) |
| 60 | 14 | recnd | |- ( ( ph /\ A < 0 ) -> B e. CC ) |
| 61 | 59 60 56 | addassd | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + B ) + if ( 0 <_ C , C , 0 ) ) = ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) ) |
| 62 | 61 | oveq1d | |- ( ( ph /\ A < 0 ) -> ( ( ( ( A x. X ) + B ) + if ( 0 <_ C , C , 0 ) ) x. X ) = ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) ) |
| 63 | 22 | recnd | |- ( ( ph /\ A < 0 ) -> A e. CC ) |
| 64 | 63 57 57 | mulassd | |- ( ( ph /\ A < 0 ) -> ( ( A x. X ) x. X ) = ( A x. ( X x. X ) ) ) |
| 65 | sqval | |- ( X e. CC -> ( X ^ 2 ) = ( X x. X ) ) |
|
| 66 | 57 65 | syl | |- ( ( ph /\ A < 0 ) -> ( X ^ 2 ) = ( X x. X ) ) |
| 67 | 66 | oveq2d | |- ( ( ph /\ A < 0 ) -> ( A x. ( X ^ 2 ) ) = ( A x. ( X x. X ) ) ) |
| 68 | 64 67 | eqtr4d | |- ( ( ph /\ A < 0 ) -> ( ( A x. X ) x. X ) = ( A x. ( X ^ 2 ) ) ) |
| 69 | 68 | oveq1d | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) x. X ) + ( B x. X ) ) = ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) ) |
| 70 | 59 57 60 69 | joinlmuladdmuld | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + B ) x. X ) = ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) ) |
| 71 | 70 | oveq1d | |- ( ( ph /\ A < 0 ) -> ( ( ( ( A x. X ) + B ) x. X ) + ( if ( 0 <_ C , C , 0 ) x. X ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + ( if ( 0 <_ C , C , 0 ) x. X ) ) ) |
| 72 | 58 62 71 | 3eqtr3d | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + ( if ( 0 <_ C , C , 0 ) x. X ) ) ) |
| 73 | 53 72 | breqtrrd | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) <_ ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) ) |
| 74 | 23 31 | remulcld | |- ( ( ph /\ A < 0 ) -> ( -u A x. X ) e. RR ) |
| 75 | 19 | ltp1d | |- ( ( ph /\ A < 0 ) -> ( B + if ( 0 <_ C , C , 0 ) ) < ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) ) |
| 76 | max2 | |- ( ( 1 e. RR /\ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) e. RR ) -> ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) <_ if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) ) |
|
| 77 | 28 27 76 | sylancr | |- ( ( ph /\ A < 0 ) -> ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) <_ if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) ) |
| 78 | 77 5 | breqtrrdi | |- ( ( ph /\ A < 0 ) -> ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) <_ X ) |
| 79 | ledivmul | |- ( ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) e. RR /\ X e. RR /\ ( -u A e. RR /\ 0 < -u A ) ) -> ( ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) <_ X <-> ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) <_ ( -u A x. X ) ) ) |
|
| 80 | 21 31 23 25 79 | syl112anc | |- ( ( ph /\ A < 0 ) -> ( ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) <_ X <-> ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) <_ ( -u A x. X ) ) ) |
| 81 | 78 80 | mpbid | |- ( ( ph /\ A < 0 ) -> ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) <_ ( -u A x. X ) ) |
| 82 | 19 21 74 75 81 | ltletrd | |- ( ( ph /\ A < 0 ) -> ( B + if ( 0 <_ C , C , 0 ) ) < ( -u A x. X ) ) |
| 83 | 63 57 | mulneg1d | |- ( ( ph /\ A < 0 ) -> ( -u A x. X ) = -u ( A x. X ) ) |
| 84 | df-neg | |- -u ( A x. X ) = ( 0 - ( A x. X ) ) |
|
| 85 | 83 84 | eqtrdi | |- ( ( ph /\ A < 0 ) -> ( -u A x. X ) = ( 0 - ( A x. X ) ) ) |
| 86 | 82 85 | breqtrd | |- ( ( ph /\ A < 0 ) -> ( B + if ( 0 <_ C , C , 0 ) ) < ( 0 - ( A x. X ) ) ) |
| 87 | 39 19 42 | ltaddsub2d | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) < 0 <-> ( B + if ( 0 <_ C , C , 0 ) ) < ( 0 - ( A x. X ) ) ) ) |
| 88 | 86 87 | mpbird | |- ( ( ph /\ A < 0 ) -> ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) < 0 ) |
| 89 | 28 | a1i | |- ( ( ph /\ A < 0 ) -> 1 e. RR ) |
| 90 | 0lt1 | |- 0 < 1 |
|
| 91 | 90 | a1i | |- ( ( ph /\ A < 0 ) -> 0 < 1 ) |
| 92 | 42 89 31 91 50 | ltletrd | |- ( ( ph /\ A < 0 ) -> 0 < X ) |
| 93 | ltmul1 | |- ( ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) e. RR /\ 0 e. RR /\ ( X e. RR /\ 0 < X ) ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) < 0 <-> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) < ( 0 x. X ) ) ) |
|
| 94 | 40 42 31 92 93 | syl112anc | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) < 0 <-> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) < ( 0 x. X ) ) ) |
| 95 | 88 94 | mpbid | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) < ( 0 x. X ) ) |
| 96 | 57 | mul02d | |- ( ( ph /\ A < 0 ) -> ( 0 x. X ) = 0 ) |
| 97 | 95 96 | breqtrd | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) < 0 ) |
| 98 | 38 41 42 73 97 | lelttrd | |- ( ( ph /\ A < 0 ) -> ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) < 0 ) |
| 99 | ltnle | |- ( ( ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) e. RR /\ 0 e. RR ) -> ( ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) < 0 <-> -. 0 <_ ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) ) ) |
|
| 100 | 38 16 99 | sylancl | |- ( ( ph /\ A < 0 ) -> ( ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) < 0 <-> -. 0 <_ ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) ) ) |
| 101 | 98 100 | mpbid | |- ( ( ph /\ A < 0 ) -> -. 0 <_ ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) ) |
| 102 | 32 101 | pm2.65da | |- ( ph -> -. A < 0 ) |
| 103 | lelttric | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A \/ A < 0 ) ) |
|
| 104 | 16 1 103 | sylancr | |- ( ph -> ( 0 <_ A \/ A < 0 ) ) |
| 105 | 104 | ord | |- ( ph -> ( -. 0 <_ A -> A < 0 ) ) |
| 106 | 102 105 | mt3d | |- ( ph -> 0 <_ A ) |