This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer power with a positive integer base is greater than 1, then the exponent is positive. (Contributed by AV, 28-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnngt1 | |- ( ( A e. NN /\ B e. ZZ /\ 1 < ( A ^ B ) ) -> B e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn | |- ( B e. ZZ <-> ( B e. RR /\ ( B e. NN \/ -u B e. NN0 ) ) ) |
|
| 2 | 2a1 | |- ( B e. NN -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) |
|
| 3 | 2 | a1d | |- ( B e. NN -> ( B e. RR -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) ) |
| 4 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 5 | 4 | 3ad2ant3 | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> A e. CC ) |
| 6 | recn | |- ( B e. RR -> B e. CC ) |
|
| 7 | 6 | 3ad2ant2 | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> B e. CC ) |
| 8 | simp1 | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> -u B e. NN0 ) |
|
| 9 | expneg2 | |- ( ( A e. CC /\ B e. CC /\ -u B e. NN0 ) -> ( A ^ B ) = ( 1 / ( A ^ -u B ) ) ) |
|
| 10 | 5 7 8 9 | syl3anc | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( A ^ B ) = ( 1 / ( A ^ -u B ) ) ) |
| 11 | 10 | breq2d | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 < ( A ^ B ) <-> 1 < ( 1 / ( A ^ -u B ) ) ) ) |
| 12 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 13 | reexpcl | |- ( ( A e. RR /\ -u B e. NN0 ) -> ( A ^ -u B ) e. RR ) |
|
| 14 | 12 13 | sylan | |- ( ( A e. NN /\ -u B e. NN0 ) -> ( A ^ -u B ) e. RR ) |
| 15 | 14 | ancoms | |- ( ( -u B e. NN0 /\ A e. NN ) -> ( A ^ -u B ) e. RR ) |
| 16 | 12 | adantl | |- ( ( -u B e. NN0 /\ A e. NN ) -> A e. RR ) |
| 17 | nn0z | |- ( -u B e. NN0 -> -u B e. ZZ ) |
|
| 18 | 17 | adantr | |- ( ( -u B e. NN0 /\ A e. NN ) -> -u B e. ZZ ) |
| 19 | nngt0 | |- ( A e. NN -> 0 < A ) |
|
| 20 | 19 | adantl | |- ( ( -u B e. NN0 /\ A e. NN ) -> 0 < A ) |
| 21 | expgt0 | |- ( ( A e. RR /\ -u B e. ZZ /\ 0 < A ) -> 0 < ( A ^ -u B ) ) |
|
| 22 | 16 18 20 21 | syl3anc | |- ( ( -u B e. NN0 /\ A e. NN ) -> 0 < ( A ^ -u B ) ) |
| 23 | 15 22 | jca | |- ( ( -u B e. NN0 /\ A e. NN ) -> ( ( A ^ -u B ) e. RR /\ 0 < ( A ^ -u B ) ) ) |
| 24 | 23 | 3adant2 | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( ( A ^ -u B ) e. RR /\ 0 < ( A ^ -u B ) ) ) |
| 25 | reclt1 | |- ( ( ( A ^ -u B ) e. RR /\ 0 < ( A ^ -u B ) ) -> ( ( A ^ -u B ) < 1 <-> 1 < ( 1 / ( A ^ -u B ) ) ) ) |
|
| 26 | 24 25 | syl | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( ( A ^ -u B ) < 1 <-> 1 < ( 1 / ( A ^ -u B ) ) ) ) |
| 27 | 12 | 3ad2ant3 | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> A e. RR ) |
| 28 | nnge1 | |- ( A e. NN -> 1 <_ A ) |
|
| 29 | 28 | 3ad2ant3 | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> 1 <_ A ) |
| 30 | 27 8 29 | expge1d | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> 1 <_ ( A ^ -u B ) ) |
| 31 | 1red | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> 1 e. RR ) |
|
| 32 | 15 | 3adant2 | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( A ^ -u B ) e. RR ) |
| 33 | 31 32 | lenltd | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 <_ ( A ^ -u B ) <-> -. ( A ^ -u B ) < 1 ) ) |
| 34 | pm2.21 | |- ( -. ( A ^ -u B ) < 1 -> ( ( A ^ -u B ) < 1 -> B e. NN ) ) |
|
| 35 | 33 34 | biimtrdi | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 <_ ( A ^ -u B ) -> ( ( A ^ -u B ) < 1 -> B e. NN ) ) ) |
| 36 | 30 35 | mpd | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( ( A ^ -u B ) < 1 -> B e. NN ) ) |
| 37 | 26 36 | sylbird | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 < ( 1 / ( A ^ -u B ) ) -> B e. NN ) ) |
| 38 | 11 37 | sylbid | |- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 < ( A ^ B ) -> B e. NN ) ) |
| 39 | 38 | 3exp | |- ( -u B e. NN0 -> ( B e. RR -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) ) |
| 40 | 3 39 | jaoi | |- ( ( B e. NN \/ -u B e. NN0 ) -> ( B e. RR -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) ) |
| 41 | 40 | impcom | |- ( ( B e. RR /\ ( B e. NN \/ -u B e. NN0 ) ) -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) |
| 42 | 1 41 | sylbi | |- ( B e. ZZ -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) |
| 43 | 42 | 3imp21 | |- ( ( A e. NN /\ B e. ZZ /\ 1 < ( A ^ B ) ) -> B e. NN ) |