This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extension of an injection which is a restriction of a function. (Contributed by AV, 3-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resf1ext2b | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( ( Fun `' ( F |` C ) /\ ( F ` X ) e/ ( F " C ) ) <-> Fun `' ( F |` ( C u. { X } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssres | |- ( ( F : A --> B /\ C C_ A ) -> ( F |` C ) : C --> B ) |
|
| 2 | 1 | 3adant2 | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( F |` C ) : C --> B ) |
| 3 | df-f1 | |- ( ( F |` C ) : C -1-1-> B <-> ( ( F |` C ) : C --> B /\ Fun `' ( F |` C ) ) ) |
|
| 4 | resf1extb | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( ( ( F |` C ) : C -1-1-> B /\ ( F ` X ) e/ ( F " C ) ) <-> ( F |` ( C u. { X } ) ) : ( C u. { X } ) -1-1-> B ) ) |
|
| 5 | df-f1 | |- ( ( F |` ( C u. { X } ) ) : ( C u. { X } ) -1-1-> B <-> ( ( F |` ( C u. { X } ) ) : ( C u. { X } ) --> B /\ Fun `' ( F |` ( C u. { X } ) ) ) ) |
|
| 6 | 5 | simprbi | |- ( ( F |` ( C u. { X } ) ) : ( C u. { X } ) -1-1-> B -> Fun `' ( F |` ( C u. { X } ) ) ) |
| 7 | 4 6 | biimtrdi | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( ( ( F |` C ) : C -1-1-> B /\ ( F ` X ) e/ ( F " C ) ) -> Fun `' ( F |` ( C u. { X } ) ) ) ) |
| 8 | 7 | expd | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( ( F |` C ) : C -1-1-> B -> ( ( F ` X ) e/ ( F " C ) -> Fun `' ( F |` ( C u. { X } ) ) ) ) ) |
| 9 | 3 8 | biimtrrid | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( ( ( F |` C ) : C --> B /\ Fun `' ( F |` C ) ) -> ( ( F ` X ) e/ ( F " C ) -> Fun `' ( F |` ( C u. { X } ) ) ) ) ) |
| 10 | 2 9 | mpand | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( Fun `' ( F |` C ) -> ( ( F ` X ) e/ ( F " C ) -> Fun `' ( F |` ( C u. { X } ) ) ) ) ) |
| 11 | 10 | impd | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( ( Fun `' ( F |` C ) /\ ( F ` X ) e/ ( F " C ) ) -> Fun `' ( F |` ( C u. { X } ) ) ) ) |
| 12 | simp1 | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> F : A --> B ) |
|
| 13 | simp3 | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> C C_ A ) |
|
| 14 | eldifi | |- ( X e. ( A \ C ) -> X e. A ) |
|
| 15 | 14 | snssd | |- ( X e. ( A \ C ) -> { X } C_ A ) |
| 16 | 15 | 3ad2ant2 | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> { X } C_ A ) |
| 17 | 13 16 | unssd | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( C u. { X } ) C_ A ) |
| 18 | 12 17 | fssresd | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( F |` ( C u. { X } ) ) : ( C u. { X } ) --> B ) |
| 19 | 3 | simprbi | |- ( ( F |` C ) : C -1-1-> B -> Fun `' ( F |` C ) ) |
| 20 | 19 | anim1i | |- ( ( ( F |` C ) : C -1-1-> B /\ ( F ` X ) e/ ( F " C ) ) -> ( Fun `' ( F |` C ) /\ ( F ` X ) e/ ( F " C ) ) ) |
| 21 | 4 20 | biimtrrdi | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( ( F |` ( C u. { X } ) ) : ( C u. { X } ) -1-1-> B -> ( Fun `' ( F |` C ) /\ ( F ` X ) e/ ( F " C ) ) ) ) |
| 22 | 5 21 | biimtrrid | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( ( ( F |` ( C u. { X } ) ) : ( C u. { X } ) --> B /\ Fun `' ( F |` ( C u. { X } ) ) ) -> ( Fun `' ( F |` C ) /\ ( F ` X ) e/ ( F " C ) ) ) ) |
| 23 | 18 22 | mpand | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( Fun `' ( F |` ( C u. { X } ) ) -> ( Fun `' ( F |` C ) /\ ( F ` X ) e/ ( F " C ) ) ) ) |
| 24 | 11 23 | impbid | |- ( ( F : A --> B /\ X e. ( A \ C ) /\ C C_ A ) -> ( ( Fun `' ( F |` C ) /\ ( F ` X ) e/ ( F " C ) ) <-> Fun `' ( F |` ( C u. { X } ) ) ) ) |