This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open set of sequential integers is empty if the bounds are equal or reversed. (Contributed by Alexander van der Vekens, 30-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzon | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N <_ M <-> ( M ..^ N ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 2 | fzn | |- ( ( M e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( ( N - 1 ) < M <-> ( M ... ( N - 1 ) ) = (/) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( N - 1 ) < M <-> ( M ... ( N - 1 ) ) = (/) ) ) |
| 4 | zlem1lt | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N <_ M <-> ( N - 1 ) < M ) ) |
|
| 5 | 4 | ancoms | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N <_ M <-> ( N - 1 ) < M ) ) |
| 6 | fzoval | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
|
| 7 | 6 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 8 | 7 | eqeq1d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M ..^ N ) = (/) <-> ( M ... ( N - 1 ) ) = (/) ) ) |
| 9 | 3 5 8 | 3bitr4d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N <_ M <-> ( M ..^ N ) = (/) ) ) |