This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmo.1 | |- ( ph -> R Or A ) |
|
| eqsupd.2 | |- ( ph -> C e. A ) |
||
| eqsupd.3 | |- ( ( ph /\ y e. B ) -> -. C R y ) |
||
| eqsupd.4 | |- ( ( ph /\ ( y e. A /\ y R C ) ) -> E. z e. B y R z ) |
||
| Assertion | eqsupd | |- ( ph -> sup ( B , A , R ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmo.1 | |- ( ph -> R Or A ) |
|
| 2 | eqsupd.2 | |- ( ph -> C e. A ) |
|
| 3 | eqsupd.3 | |- ( ( ph /\ y e. B ) -> -. C R y ) |
|
| 4 | eqsupd.4 | |- ( ( ph /\ ( y e. A /\ y R C ) ) -> E. z e. B y R z ) |
|
| 5 | 3 | ralrimiva | |- ( ph -> A. y e. B -. C R y ) |
| 6 | 4 | expr | |- ( ( ph /\ y e. A ) -> ( y R C -> E. z e. B y R z ) ) |
| 7 | 6 | ralrimiva | |- ( ph -> A. y e. A ( y R C -> E. z e. B y R z ) ) |
| 8 | 1 | eqsup | |- ( ph -> ( ( C e. A /\ A. y e. B -. C R y /\ A. y e. A ( y R C -> E. z e. B y R z ) ) -> sup ( B , A , R ) = C ) ) |
| 9 | 2 5 7 8 | mp3and | |- ( ph -> sup ( B , A , R ) = C ) |