This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of exponents law for complex exponentiation. Variation on cxpmul with more general conditions on A and B when C is a nonnegative integer. (Contributed by Mario Carneiro, 9-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpmul2 | |- ( ( A e. CC /\ B e. CC /\ C e. NN0 ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = 0 -> ( B x. x ) = ( B x. 0 ) ) |
|
| 2 | 1 | oveq2d | |- ( x = 0 -> ( A ^c ( B x. x ) ) = ( A ^c ( B x. 0 ) ) ) |
| 3 | oveq2 | |- ( x = 0 -> ( ( A ^c B ) ^ x ) = ( ( A ^c B ) ^ 0 ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( x = 0 -> ( ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) <-> ( A ^c ( B x. 0 ) ) = ( ( A ^c B ) ^ 0 ) ) ) |
| 5 | 4 | imbi2d | |- ( x = 0 -> ( ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. 0 ) ) = ( ( A ^c B ) ^ 0 ) ) ) ) |
| 6 | oveq2 | |- ( x = k -> ( B x. x ) = ( B x. k ) ) |
|
| 7 | 6 | oveq2d | |- ( x = k -> ( A ^c ( B x. x ) ) = ( A ^c ( B x. k ) ) ) |
| 8 | oveq2 | |- ( x = k -> ( ( A ^c B ) ^ x ) = ( ( A ^c B ) ^ k ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( x = k -> ( ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) <-> ( A ^c ( B x. k ) ) = ( ( A ^c B ) ^ k ) ) ) |
| 10 | 9 | imbi2d | |- ( x = k -> ( ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. k ) ) = ( ( A ^c B ) ^ k ) ) ) ) |
| 11 | oveq2 | |- ( x = ( k + 1 ) -> ( B x. x ) = ( B x. ( k + 1 ) ) ) |
|
| 12 | 11 | oveq2d | |- ( x = ( k + 1 ) -> ( A ^c ( B x. x ) ) = ( A ^c ( B x. ( k + 1 ) ) ) ) |
| 13 | oveq2 | |- ( x = ( k + 1 ) -> ( ( A ^c B ) ^ x ) = ( ( A ^c B ) ^ ( k + 1 ) ) ) |
|
| 14 | 12 13 | eqeq12d | |- ( x = ( k + 1 ) -> ( ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) <-> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c B ) ^ ( k + 1 ) ) ) ) |
| 15 | 14 | imbi2d | |- ( x = ( k + 1 ) -> ( ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c B ) ^ ( k + 1 ) ) ) ) ) |
| 16 | oveq2 | |- ( x = C -> ( B x. x ) = ( B x. C ) ) |
|
| 17 | 16 | oveq2d | |- ( x = C -> ( A ^c ( B x. x ) ) = ( A ^c ( B x. C ) ) ) |
| 18 | oveq2 | |- ( x = C -> ( ( A ^c B ) ^ x ) = ( ( A ^c B ) ^ C ) ) |
|
| 19 | 17 18 | eqeq12d | |- ( x = C -> ( ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) <-> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) |
| 20 | 19 | imbi2d | |- ( x = C -> ( ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. x ) ) = ( ( A ^c B ) ^ x ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) ) |
| 21 | cxp0 | |- ( A e. CC -> ( A ^c 0 ) = 1 ) |
|
| 22 | 21 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c 0 ) = 1 ) |
| 23 | mul01 | |- ( B e. CC -> ( B x. 0 ) = 0 ) |
|
| 24 | 23 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( B x. 0 ) = 0 ) |
| 25 | 24 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. 0 ) ) = ( A ^c 0 ) ) |
| 26 | cxpcl | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC ) |
|
| 27 | 26 | exp0d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^c B ) ^ 0 ) = 1 ) |
| 28 | 22 25 27 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. 0 ) ) = ( ( A ^c B ) ^ 0 ) ) |
| 29 | oveq1 | |- ( ( A ^c ( B x. k ) ) = ( ( A ^c B ) ^ k ) -> ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) = ( ( ( A ^c B ) ^ k ) x. ( A ^c B ) ) ) |
|
| 30 | 0cn | |- 0 e. CC |
|
| 31 | cxp0 | |- ( 0 e. CC -> ( 0 ^c 0 ) = 1 ) |
|
| 32 | 30 31 | ax-mp | |- ( 0 ^c 0 ) = 1 |
| 33 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 34 | 32 33 | eqtr4i | |- ( 0 ^c 0 ) = ( 1 x. 1 ) |
| 35 | simplr | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> A = 0 ) |
|
| 36 | simpr | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> B = 0 ) |
|
| 37 | 36 | oveq1d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( B x. ( k + 1 ) ) = ( 0 x. ( k + 1 ) ) ) |
| 38 | nn0p1nn | |- ( k e. NN0 -> ( k + 1 ) e. NN ) |
|
| 39 | 38 | adantl | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( k + 1 ) e. NN ) |
| 40 | 39 | nncnd | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( k + 1 ) e. CC ) |
| 41 | 40 | ad2antrr | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( k + 1 ) e. CC ) |
| 42 | 41 | mul02d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( 0 x. ( k + 1 ) ) = 0 ) |
| 43 | 37 42 | eqtrd | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( B x. ( k + 1 ) ) = 0 ) |
| 44 | 35 43 | oveq12d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( 0 ^c 0 ) ) |
| 45 | 36 | oveq1d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( B x. k ) = ( 0 x. k ) ) |
| 46 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 47 | 46 | adantl | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> k e. CC ) |
| 48 | 47 | ad2antrr | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> k e. CC ) |
| 49 | 48 | mul02d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( 0 x. k ) = 0 ) |
| 50 | 45 49 | eqtrd | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( B x. k ) = 0 ) |
| 51 | 35 50 | oveq12d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( A ^c ( B x. k ) ) = ( 0 ^c 0 ) ) |
| 52 | 51 32 | eqtrdi | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( A ^c ( B x. k ) ) = 1 ) |
| 53 | 35 36 | oveq12d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( A ^c B ) = ( 0 ^c 0 ) ) |
| 54 | 53 32 | eqtrdi | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( A ^c B ) = 1 ) |
| 55 | 52 54 | oveq12d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) = ( 1 x. 1 ) ) |
| 56 | 34 44 55 | 3eqtr4a | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B = 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
| 57 | simpll | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> A e. CC ) |
|
| 58 | 57 | ad2antrr | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> A e. CC ) |
| 59 | simplr | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> B e. CC ) |
|
| 60 | 59 47 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( B x. k ) e. CC ) |
| 61 | 60 | ad2antrr | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( B x. k ) e. CC ) |
| 62 | cxpcl | |- ( ( A e. CC /\ ( B x. k ) e. CC ) -> ( A ^c ( B x. k ) ) e. CC ) |
|
| 63 | 58 61 62 | syl2anc | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( A ^c ( B x. k ) ) e. CC ) |
| 64 | 63 | mul01d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( ( A ^c ( B x. k ) ) x. 0 ) = 0 ) |
| 65 | simplr | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> A = 0 ) |
|
| 66 | 65 | oveq1d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( A ^c B ) = ( 0 ^c B ) ) |
| 67 | 59 | ad2antrr | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> B e. CC ) |
| 68 | simpr | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> B =/= 0 ) |
|
| 69 | 0cxp | |- ( ( B e. CC /\ B =/= 0 ) -> ( 0 ^c B ) = 0 ) |
|
| 70 | 67 68 69 | syl2anc | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( 0 ^c B ) = 0 ) |
| 71 | 66 70 | eqtrd | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( A ^c B ) = 0 ) |
| 72 | 71 | oveq2d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) = ( ( A ^c ( B x. k ) ) x. 0 ) ) |
| 73 | 65 | oveq1d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( 0 ^c ( B x. ( k + 1 ) ) ) ) |
| 74 | 40 | ad2antrr | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( k + 1 ) e. CC ) |
| 75 | 67 74 | mulcld | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( B x. ( k + 1 ) ) e. CC ) |
| 76 | 39 | nnne0d | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( k + 1 ) =/= 0 ) |
| 77 | 76 | ad2antrr | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( k + 1 ) =/= 0 ) |
| 78 | 67 74 68 77 | mulne0d | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( B x. ( k + 1 ) ) =/= 0 ) |
| 79 | 0cxp | |- ( ( ( B x. ( k + 1 ) ) e. CC /\ ( B x. ( k + 1 ) ) =/= 0 ) -> ( 0 ^c ( B x. ( k + 1 ) ) ) = 0 ) |
|
| 80 | 75 78 79 | syl2anc | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( 0 ^c ( B x. ( k + 1 ) ) ) = 0 ) |
| 81 | 73 80 | eqtrd | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = 0 ) |
| 82 | 64 72 81 | 3eqtr4rd | |- ( ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) /\ B =/= 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
| 83 | 56 82 | pm2.61dane | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A = 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
| 84 | 59 | adantr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> B e. CC ) |
| 85 | 47 | adantr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> k e. CC ) |
| 86 | 1cnd | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> 1 e. CC ) |
|
| 87 | 84 85 86 | adddid | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( B x. ( k + 1 ) ) = ( ( B x. k ) + ( B x. 1 ) ) ) |
| 88 | 84 | mulridd | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( B x. 1 ) = B ) |
| 89 | 88 | oveq2d | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( ( B x. k ) + ( B x. 1 ) ) = ( ( B x. k ) + B ) ) |
| 90 | 87 89 | eqtrd | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( B x. ( k + 1 ) ) = ( ( B x. k ) + B ) ) |
| 91 | 90 | oveq2d | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( A ^c ( ( B x. k ) + B ) ) ) |
| 92 | 57 | adantr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> A e. CC ) |
| 93 | simpr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> A =/= 0 ) |
|
| 94 | 60 | adantr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( B x. k ) e. CC ) |
| 95 | cxpadd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B x. k ) e. CC /\ B e. CC ) -> ( A ^c ( ( B x. k ) + B ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
|
| 96 | 92 93 94 84 95 | syl211anc | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( A ^c ( ( B x. k ) + B ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
| 97 | 91 96 | eqtrd | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ A =/= 0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
| 98 | 83 97 | pm2.61dane | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) ) |
| 99 | expp1 | |- ( ( ( A ^c B ) e. CC /\ k e. NN0 ) -> ( ( A ^c B ) ^ ( k + 1 ) ) = ( ( ( A ^c B ) ^ k ) x. ( A ^c B ) ) ) |
|
| 100 | 26 99 | sylan | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A ^c B ) ^ ( k + 1 ) ) = ( ( ( A ^c B ) ^ k ) x. ( A ^c B ) ) ) |
| 101 | 98 100 | eqeq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c B ) ^ ( k + 1 ) ) <-> ( ( A ^c ( B x. k ) ) x. ( A ^c B ) ) = ( ( ( A ^c B ) ^ k ) x. ( A ^c B ) ) ) ) |
| 102 | 29 101 | imbitrrid | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A ^c ( B x. k ) ) = ( ( A ^c B ) ^ k ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c B ) ^ ( k + 1 ) ) ) ) |
| 103 | 102 | expcom | |- ( k e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( A ^c ( B x. k ) ) = ( ( A ^c B ) ^ k ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c B ) ^ ( k + 1 ) ) ) ) ) |
| 104 | 103 | a2d | |- ( k e. NN0 -> ( ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. k ) ) = ( ( A ^c B ) ^ k ) ) -> ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. ( k + 1 ) ) ) = ( ( A ^c B ) ^ ( k + 1 ) ) ) ) ) |
| 105 | 5 10 15 20 28 104 | nn0ind | |- ( C e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) |
| 106 | 105 | com12 | |- ( ( A e. CC /\ B e. CC ) -> ( C e. NN0 -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) |
| 107 | 106 | 3impia | |- ( ( A e. CC /\ B e. CC /\ C e. NN0 ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) |