This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpmul | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^c C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> C e. CC ) |
|
| 2 | simp2 | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> B e. RR ) |
|
| 3 | 2 | recnd | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> B e. CC ) |
| 4 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( log ` A ) e. RR ) |
| 6 | 5 | recnd | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( log ` A ) e. CC ) |
| 7 | 1 3 6 | mulassd | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( ( C x. B ) x. ( log ` A ) ) = ( C x. ( B x. ( log ` A ) ) ) ) |
| 8 | 3 1 | mulcomd | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
| 9 | 8 | oveq1d | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( ( B x. C ) x. ( log ` A ) ) = ( ( C x. B ) x. ( log ` A ) ) ) |
| 10 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 11 | 10 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> A e. CC ) |
| 12 | rpne0 | |- ( A e. RR+ -> A =/= 0 ) |
|
| 13 | 12 | 3ad2ant1 | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> A =/= 0 ) |
| 14 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
|
| 15 | 11 13 3 14 | syl3anc | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 16 | 15 | fveq2d | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( log ` ( A ^c B ) ) = ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) ) |
| 17 | 2 5 | remulcld | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( B x. ( log ` A ) ) e. RR ) |
| 18 | 17 | relogefd | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( B x. ( log ` A ) ) ) |
| 19 | 16 18 | eqtrd | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) ) |
| 20 | 19 | oveq2d | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( C x. ( log ` ( A ^c B ) ) ) = ( C x. ( B x. ( log ` A ) ) ) ) |
| 21 | 7 9 20 | 3eqtr4d | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( ( B x. C ) x. ( log ` A ) ) = ( C x. ( log ` ( A ^c B ) ) ) ) |
| 22 | 21 | fveq2d | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( exp ` ( ( B x. C ) x. ( log ` A ) ) ) = ( exp ` ( C x. ( log ` ( A ^c B ) ) ) ) ) |
| 23 | 3 1 | mulcld | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( B x. C ) e. CC ) |
| 24 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ ( B x. C ) e. CC ) -> ( A ^c ( B x. C ) ) = ( exp ` ( ( B x. C ) x. ( log ` A ) ) ) ) |
|
| 25 | 11 13 23 24 | syl3anc | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( A ^c ( B x. C ) ) = ( exp ` ( ( B x. C ) x. ( log ` A ) ) ) ) |
| 26 | cxpcl | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC ) |
|
| 27 | 11 3 26 | syl2anc | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( A ^c B ) e. CC ) |
| 28 | cxpne0 | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) =/= 0 ) |
|
| 29 | 11 13 3 28 | syl3anc | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( A ^c B ) =/= 0 ) |
| 30 | cxpef | |- ( ( ( A ^c B ) e. CC /\ ( A ^c B ) =/= 0 /\ C e. CC ) -> ( ( A ^c B ) ^c C ) = ( exp ` ( C x. ( log ` ( A ^c B ) ) ) ) ) |
|
| 31 | 27 29 1 30 | syl3anc | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( ( A ^c B ) ^c C ) = ( exp ` ( C x. ( log ` ( A ^c B ) ) ) ) ) |
| 32 | 22 25 31 | 3eqtr4d | |- ( ( A e. RR+ /\ B e. RR /\ C e. CC ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^c C ) ) |