This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of exponents law for complex exponentiation. Variation on cxpmul with more general conditions on A and B when C is a nonnegative integer. (Contributed by Mario Carneiro, 9-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpmul2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 0 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 0 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝑥 = 0 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( 𝐴 ↑𝑐 ( 𝐵 · 0 ) ) ) |
| 3 | oveq2 | ⊢ ( 𝑥 = 0 → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 0 ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ↔ ( 𝐴 ↑𝑐 ( 𝐵 · 0 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 0 ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 0 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 0 ) ) ) ) |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑘 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑥 = 𝑘 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑥 = 𝑘 → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ↔ ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑥 = 𝑘 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · ( 𝑘 + 1 ) ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) | |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ↔ ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝐶 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) | |
| 19 | 17 18 | eqeq12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ↔ ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑥 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) ) |
| 21 | cxp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 0 ) = 1 ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 0 ) = 1 ) |
| 23 | mul01 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 · 0 ) = 0 ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · 0 ) = 0 ) |
| 25 | 24 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 0 ) ) = ( 𝐴 ↑𝑐 0 ) ) |
| 26 | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) | |
| 27 | 26 | exp0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 0 ) = 1 ) |
| 28 | 22 25 27 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 0 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 0 ) ) |
| 29 | oveq1 | ⊢ ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) | |
| 30 | 0cn | ⊢ 0 ∈ ℂ | |
| 31 | cxp0 | ⊢ ( 0 ∈ ℂ → ( 0 ↑𝑐 0 ) = 1 ) | |
| 32 | 30 31 | ax-mp | ⊢ ( 0 ↑𝑐 0 ) = 1 |
| 33 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 34 | 32 33 | eqtr4i | ⊢ ( 0 ↑𝑐 0 ) = ( 1 · 1 ) |
| 35 | simplr | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → 𝐴 = 0 ) | |
| 36 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → 𝐵 = 0 ) | |
| 37 | 36 | oveq1d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) = ( 0 · ( 𝑘 + 1 ) ) ) |
| 38 | nn0p1nn | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 39 | 38 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 40 | 39 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 41 | 40 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 42 | 41 | mul02d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 0 · ( 𝑘 + 1 ) ) = 0 ) |
| 43 | 37 42 | eqtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) = 0 ) |
| 44 | 35 43 | oveq12d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( 0 ↑𝑐 0 ) ) |
| 45 | 36 | oveq1d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐵 · 𝑘 ) = ( 0 · 𝑘 ) ) |
| 46 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 47 | 46 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 48 | 47 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → 𝑘 ∈ ℂ ) |
| 49 | 48 | mul02d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 0 · 𝑘 ) = 0 ) |
| 50 | 45 49 | eqtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐵 · 𝑘 ) = 0 ) |
| 51 | 35 50 | oveq12d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( 0 ↑𝑐 0 ) ) |
| 52 | 51 32 | eqtrdi | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = 1 ) |
| 53 | 35 36 | oveq12d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 0 ) ) |
| 54 | 53 32 | eqtrdi | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = 1 ) |
| 55 | 52 54 | oveq12d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) = ( 1 · 1 ) ) |
| 56 | 34 44 55 | 3eqtr4a | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 57 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 58 | 57 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 59 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) | |
| 60 | 59 47 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 · 𝑘 ) ∈ ℂ ) |
| 61 | 60 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 · 𝑘 ) ∈ ℂ ) |
| 62 | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 · 𝑘 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) ∈ ℂ ) | |
| 63 | 58 61 62 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) ∈ ℂ ) |
| 64 | 63 | mul01d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · 0 ) = 0 ) |
| 65 | simplr | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐴 = 0 ) | |
| 66 | 65 | oveq1d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 𝐵 ) ) |
| 67 | 59 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 68 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) | |
| 69 | 0cxp | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) | |
| 70 | 67 68 69 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) |
| 71 | 66 70 | eqtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = 0 ) |
| 72 | 71 | oveq2d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · 0 ) ) |
| 73 | 65 | oveq1d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( 0 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) ) |
| 74 | 40 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 75 | 67 74 | mulcld | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 76 | 39 | nnne0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ≠ 0 ) |
| 77 | 76 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝑘 + 1 ) ≠ 0 ) |
| 78 | 67 74 68 77 | mulne0d | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) ≠ 0 ) |
| 79 | 0cxp | ⊢ ( ( ( 𝐵 · ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 𝐵 · ( 𝑘 + 1 ) ) ≠ 0 ) → ( 0 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = 0 ) | |
| 80 | 75 78 79 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = 0 ) |
| 81 | 73 80 | eqtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = 0 ) |
| 82 | 64 72 81 | 3eqtr4rd | ⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 83 | 56 82 | pm2.61dane | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 84 | 59 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 85 | 47 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝑘 ∈ ℂ ) |
| 86 | 1cnd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 1 ∈ ℂ ) | |
| 87 | 84 85 86 | adddid | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) = ( ( 𝐵 · 𝑘 ) + ( 𝐵 · 1 ) ) ) |
| 88 | 84 | mulridd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · 1 ) = 𝐵 ) |
| 89 | 88 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( ( 𝐵 · 𝑘 ) + ( 𝐵 · 1 ) ) = ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) |
| 90 | 87 89 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( 𝑘 + 1 ) ) = ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) |
| 91 | 90 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( 𝐴 ↑𝑐 ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) ) |
| 92 | 57 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 93 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) | |
| 94 | 60 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · 𝑘 ) ∈ ℂ ) |
| 95 | cxpadd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 · 𝑘 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) | |
| 96 | 92 93 94 84 95 | syl211anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( ( 𝐵 · 𝑘 ) + 𝐵 ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 97 | 91 96 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 98 | 83 97 | pm2.61dane | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 99 | expp1 | ⊢ ( ( ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) | |
| 100 | 26 99 | sylan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| 101 | 98 100 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ↔ ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) · ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) · ( 𝐴 ↑𝑐 𝐵 ) ) ) ) |
| 102 | 29 101 | imbitrrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 103 | 102 | expcom | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 104 | 103 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝑘 ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 105 | 5 10 15 20 28 104 | nn0ind | ⊢ ( 𝐶 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) |
| 106 | 105 | com12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 ∈ ℕ0 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) |
| 107 | 106 | 3impia | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) |