This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex power function allows to write n-th roots via the idiom A ^c ( 1 / N ) . (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxproot | |- ( ( A e. CC /\ N e. NN ) -> ( ( A ^c ( 1 / N ) ) ^ N ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 2 | 1 | adantl | |- ( ( A e. CC /\ N e. NN ) -> N e. CC ) |
| 3 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 4 | 3 | adantl | |- ( ( A e. CC /\ N e. NN ) -> N =/= 0 ) |
| 5 | 2 4 | recid2d | |- ( ( A e. CC /\ N e. NN ) -> ( ( 1 / N ) x. N ) = 1 ) |
| 6 | 5 | oveq2d | |- ( ( A e. CC /\ N e. NN ) -> ( A ^c ( ( 1 / N ) x. N ) ) = ( A ^c 1 ) ) |
| 7 | simpl | |- ( ( A e. CC /\ N e. NN ) -> A e. CC ) |
|
| 8 | nnrecre | |- ( N e. NN -> ( 1 / N ) e. RR ) |
|
| 9 | 8 | adantl | |- ( ( A e. CC /\ N e. NN ) -> ( 1 / N ) e. RR ) |
| 10 | 9 | recnd | |- ( ( A e. CC /\ N e. NN ) -> ( 1 / N ) e. CC ) |
| 11 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 12 | 11 | adantl | |- ( ( A e. CC /\ N e. NN ) -> N e. NN0 ) |
| 13 | cxpmul2 | |- ( ( A e. CC /\ ( 1 / N ) e. CC /\ N e. NN0 ) -> ( A ^c ( ( 1 / N ) x. N ) ) = ( ( A ^c ( 1 / N ) ) ^ N ) ) |
|
| 14 | 7 10 12 13 | syl3anc | |- ( ( A e. CC /\ N e. NN ) -> ( A ^c ( ( 1 / N ) x. N ) ) = ( ( A ^c ( 1 / N ) ) ^ N ) ) |
| 15 | cxp1 | |- ( A e. CC -> ( A ^c 1 ) = A ) |
|
| 16 | 15 | adantr | |- ( ( A e. CC /\ N e. NN ) -> ( A ^c 1 ) = A ) |
| 17 | 6 14 16 | 3eqtr3d | |- ( ( A e. CC /\ N e. NN ) -> ( ( A ^c ( 1 / N ) ) ^ N ) = A ) |