This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice element covered by the join of two distinct atoms is an atom. ( atcvat2i analog.) (Contributed by NM, 30-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrat2.b | |- B = ( Base ` K ) |
|
| cvrat2.j | |- .\/ = ( join ` K ) |
||
| cvrat2.c | |- C = ( |
||
| cvrat2.a | |- A = ( Atoms ` K ) |
||
| Assertion | cvrat2 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ X C ( P .\/ Q ) ) ) -> X e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrat2.b | |- B = ( Base ` K ) |
|
| 2 | cvrat2.j | |- .\/ = ( join ` K ) |
|
| 3 | cvrat2.c | |- C = ( |
|
| 4 | cvrat2.a | |- A = ( Atoms ` K ) |
|
| 5 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 6 | 1 2 5 3 4 | atcvrj0 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ X C ( P .\/ Q ) ) -> ( X = ( 0. ` K ) <-> P = Q ) ) |
| 7 | 6 | 3expa | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X C ( P .\/ Q ) ) -> ( X = ( 0. ` K ) <-> P = Q ) ) |
| 8 | 7 | necon3bid | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X C ( P .\/ Q ) ) -> ( X =/= ( 0. ` K ) <-> P =/= Q ) ) |
| 9 | simpl | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. HL ) |
|
| 10 | simpr1 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> X e. B ) |
|
| 11 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 12 | 11 | adantr | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. Lat ) |
| 13 | simpr2 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. A ) |
|
| 14 | 1 4 | atbase | |- ( P e. A -> P e. B ) |
| 15 | 13 14 | syl | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. B ) |
| 16 | simpr3 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. A ) |
|
| 17 | 1 4 | atbase | |- ( Q e. A -> Q e. B ) |
| 18 | 16 17 | syl | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. B ) |
| 19 | 1 2 | latjcl | |- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) e. B ) |
| 20 | 12 15 18 19 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) e. B ) |
| 21 | eqid | |- ( lt ` K ) = ( lt ` K ) |
|
| 22 | 1 21 3 | cvrlt | |- ( ( ( K e. HL /\ X e. B /\ ( P .\/ Q ) e. B ) /\ X C ( P .\/ Q ) ) -> X ( lt ` K ) ( P .\/ Q ) ) |
| 23 | 22 | ex | |- ( ( K e. HL /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X C ( P .\/ Q ) -> X ( lt ` K ) ( P .\/ Q ) ) ) |
| 24 | 9 10 20 23 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> X ( lt ` K ) ( P .\/ Q ) ) ) |
| 25 | 1 21 2 5 4 | cvrat | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X =/= ( 0. ` K ) /\ X ( lt ` K ) ( P .\/ Q ) ) -> X e. A ) ) |
| 26 | 25 | expcomd | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ( lt ` K ) ( P .\/ Q ) -> ( X =/= ( 0. ` K ) -> X e. A ) ) ) |
| 27 | 24 26 | syld | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> ( X =/= ( 0. ` K ) -> X e. A ) ) ) |
| 28 | 27 | imp | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X C ( P .\/ Q ) ) -> ( X =/= ( 0. ` K ) -> X e. A ) ) |
| 29 | 8 28 | sylbird | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ X C ( P .\/ Q ) ) -> ( P =/= Q -> X e. A ) ) |
| 30 | 29 | ex | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X C ( P .\/ Q ) -> ( P =/= Q -> X e. A ) ) ) |
| 31 | 30 | com23 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P =/= Q -> ( X C ( P .\/ Q ) -> X e. A ) ) ) |
| 32 | 31 | impd | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ X C ( P .\/ Q ) ) -> X e. A ) ) |
| 33 | 32 | 3impia | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ X C ( P .\/ Q ) ) ) -> X e. A ) |