This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lattice join is idempotent. Analogue of unidm . (Contributed by NM, 8-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjidm.b | |- B = ( Base ` K ) |
|
| latjidm.j | |- .\/ = ( join ` K ) |
||
| Assertion | latjidm | |- ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjidm.b | |- B = ( Base ` K ) |
|
| 2 | latjidm.j | |- .\/ = ( join ` K ) |
|
| 3 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 4 | simpl | |- ( ( K e. Lat /\ X e. B ) -> K e. Lat ) |
|
| 5 | 1 2 | latjcl | |- ( ( K e. Lat /\ X e. B /\ X e. B ) -> ( X .\/ X ) e. B ) |
| 6 | 5 | 3anidm23 | |- ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) e. B ) |
| 7 | simpr | |- ( ( K e. Lat /\ X e. B ) -> X e. B ) |
|
| 8 | 1 3 | latref | |- ( ( K e. Lat /\ X e. B ) -> X ( le ` K ) X ) |
| 9 | 1 3 2 | latjle12 | |- ( ( K e. Lat /\ ( X e. B /\ X e. B /\ X e. B ) ) -> ( ( X ( le ` K ) X /\ X ( le ` K ) X ) <-> ( X .\/ X ) ( le ` K ) X ) ) |
| 10 | 4 7 7 7 9 | syl13anc | |- ( ( K e. Lat /\ X e. B ) -> ( ( X ( le ` K ) X /\ X ( le ` K ) X ) <-> ( X .\/ X ) ( le ` K ) X ) ) |
| 11 | 8 8 10 | mpbi2and | |- ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) ( le ` K ) X ) |
| 12 | 1 3 2 | latlej1 | |- ( ( K e. Lat /\ X e. B /\ X e. B ) -> X ( le ` K ) ( X .\/ X ) ) |
| 13 | 12 | 3anidm23 | |- ( ( K e. Lat /\ X e. B ) -> X ( le ` K ) ( X .\/ X ) ) |
| 14 | 1 3 4 6 7 11 13 | latasymd | |- ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) = X ) |