This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of Kalmbach p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. ( cvexchi analog.) (Contributed by NM, 18-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrexch.b | |- B = ( Base ` K ) |
|
| cvrexch.j | |- .\/ = ( join ` K ) |
||
| cvrexch.m | |- ./\ = ( meet ` K ) |
||
| cvrexch.c | |- C = ( |
||
| Assertion | cvrexch | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) C Y <-> X C ( X .\/ Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrexch.b | |- B = ( Base ` K ) |
|
| 2 | cvrexch.j | |- .\/ = ( join ` K ) |
|
| 3 | cvrexch.m | |- ./\ = ( meet ` K ) |
|
| 4 | cvrexch.c | |- C = ( |
|
| 5 | 1 2 3 4 | cvrexchlem | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) C Y -> X C ( X .\/ Y ) ) ) |
| 6 | simp1 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> K e. HL ) |
|
| 7 | hlop | |- ( K e. HL -> K e. OP ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> K e. OP ) |
| 9 | simp3 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 10 | eqid | |- ( oc ` K ) = ( oc ` K ) |
|
| 11 | 1 10 | opoccl | |- ( ( K e. OP /\ Y e. B ) -> ( ( oc ` K ) ` Y ) e. B ) |
| 12 | 8 9 11 | syl2anc | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` Y ) e. B ) |
| 13 | simp2 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 14 | 1 10 | opoccl | |- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 15 | 8 13 14 | syl2anc | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 16 | 1 2 3 4 | cvrexchlem | |- ( ( K e. HL /\ ( ( oc ` K ) ` Y ) e. B /\ ( ( oc ` K ) ` X ) e. B ) -> ( ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` X ) ) C ( ( oc ` K ) ` X ) -> ( ( oc ` K ) ` Y ) C ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` X ) ) ) ) |
| 17 | 6 12 15 16 | syl3anc | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` X ) ) C ( ( oc ` K ) ` X ) -> ( ( oc ` K ) ` Y ) C ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` X ) ) ) ) |
| 18 | hlol | |- ( K e. HL -> K e. OL ) |
|
| 19 | 1 2 3 10 | oldmj1 | |- ( ( K e. OL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( X .\/ Y ) ) = ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) ) |
| 20 | 18 19 | syl3an1 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( X .\/ Y ) ) = ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) ) |
| 21 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 22 | 21 | 3ad2ant1 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> K e. Lat ) |
| 23 | 1 3 | latmcom | |- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Y ) e. B ) -> ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) = ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` X ) ) ) |
| 24 | 22 15 12 23 | syl3anc | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) = ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` X ) ) ) |
| 25 | 20 24 | eqtrd | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( X .\/ Y ) ) = ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` X ) ) ) |
| 26 | 25 | breq1d | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` ( X .\/ Y ) ) C ( ( oc ` K ) ` X ) <-> ( ( ( oc ` K ) ` Y ) ./\ ( ( oc ` K ) ` X ) ) C ( ( oc ` K ) ` X ) ) ) |
| 27 | 1 2 3 10 | oldmm1 | |- ( ( K e. OL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( X ./\ Y ) ) = ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) |
| 28 | 18 27 | syl3an1 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( X ./\ Y ) ) = ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) ) |
| 29 | 1 2 | latjcom | |- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Y ) e. B ) -> ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) = ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` X ) ) ) |
| 30 | 22 15 12 29 | syl3anc | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` X ) .\/ ( ( oc ` K ) ` Y ) ) = ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` X ) ) ) |
| 31 | 28 30 | eqtrd | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( X ./\ Y ) ) = ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` X ) ) ) |
| 32 | 31 | breq2d | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` Y ) C ( ( oc ` K ) ` ( X ./\ Y ) ) <-> ( ( oc ` K ) ` Y ) C ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` X ) ) ) ) |
| 33 | 17 26 32 | 3imtr4d | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` ( X .\/ Y ) ) C ( ( oc ` K ) ` X ) -> ( ( oc ` K ) ` Y ) C ( ( oc ` K ) ` ( X ./\ Y ) ) ) ) |
| 34 | 1 2 | latjcl | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) |
| 35 | 21 34 | syl3an1 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) |
| 36 | 1 10 4 | cvrcon3b | |- ( ( K e. OP /\ X e. B /\ ( X .\/ Y ) e. B ) -> ( X C ( X .\/ Y ) <-> ( ( oc ` K ) ` ( X .\/ Y ) ) C ( ( oc ` K ) ` X ) ) ) |
| 37 | 8 13 35 36 | syl3anc | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X C ( X .\/ Y ) <-> ( ( oc ` K ) ` ( X .\/ Y ) ) C ( ( oc ` K ) ` X ) ) ) |
| 38 | 1 3 | latmcl | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
| 39 | 21 38 | syl3an1 | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
| 40 | 1 10 4 | cvrcon3b | |- ( ( K e. OP /\ ( X ./\ Y ) e. B /\ Y e. B ) -> ( ( X ./\ Y ) C Y <-> ( ( oc ` K ) ` Y ) C ( ( oc ` K ) ` ( X ./\ Y ) ) ) ) |
| 41 | 8 39 9 40 | syl3anc | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) C Y <-> ( ( oc ` K ) ` Y ) C ( ( oc ` K ) ` ( X ./\ Y ) ) ) ) |
| 42 | 33 37 41 | 3imtr4d | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X C ( X .\/ Y ) -> ( X ./\ Y ) C Y ) ) |
| 43 | 5 42 | impbid | |- ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) C Y <-> X C ( X .\/ Y ) ) ) |