This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add join to both sides of a lattice ordering. ( chlej2i analog.) (Contributed by NM, 8-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlej.b | |- B = ( Base ` K ) |
|
| latlej.l | |- .<_ = ( le ` K ) |
||
| latlej.j | |- .\/ = ( join ` K ) |
||
| Assertion | latjlej2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( Z .\/ X ) .<_ ( Z .\/ Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | |- B = ( Base ` K ) |
|
| 2 | latlej.l | |- .<_ = ( le ` K ) |
|
| 3 | latlej.j | |- .\/ = ( join ` K ) |
|
| 4 | 1 2 3 | latjlej1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( X .\/ Z ) .<_ ( Y .\/ Z ) ) ) |
| 5 | 1 3 | latjcom | |- ( ( K e. Lat /\ X e. B /\ Z e. B ) -> ( X .\/ Z ) = ( Z .\/ X ) ) |
| 6 | 5 | 3adant3r2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ Z ) = ( Z .\/ X ) ) |
| 7 | 1 3 | latjcom | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y .\/ Z ) = ( Z .\/ Y ) ) |
| 8 | 7 | 3adant3r1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .\/ Z ) = ( Z .\/ Y ) ) |
| 9 | 6 8 | breq12d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Z ) .<_ ( Y .\/ Z ) <-> ( Z .\/ X ) .<_ ( Z .\/ Y ) ) ) |
| 10 | 4 9 | sylibd | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( Z .\/ X ) .<_ ( Z .\/ Y ) ) ) |