This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of PtakPulmannova p. 68. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | atcvat3.1 | |- A e. CH |
|
| Assertion | atcvat3i | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) -> ( A i^i ( B vH C ) ) e. HAtoms ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atcvat3.1 | |- A e. CH |
|
| 2 | chcv1 | |- ( ( A e. CH /\ C e. HAtoms ) -> ( -. C C_ A <-> A |
|
| 3 | 1 2 | mpan | |- ( C e. HAtoms -> ( -. C C_ A <-> A |
| 4 | 3 | biimpa | |- ( ( C e. HAtoms /\ -. C C_ A ) -> A |
| 5 | 4 | ad2ant2lr | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( -. C C_ A /\ B C_ ( A vH C ) ) ) -> A |
| 6 | atelch | |- ( B e. HAtoms -> B e. CH ) |
|
| 7 | atelch | |- ( C e. HAtoms -> C e. CH ) |
|
| 8 | 6 7 | anim12i | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( B e. CH /\ C e. CH ) ) |
| 9 | chjcom | |- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) = ( C vH B ) ) |
|
| 10 | 9 | oveq2d | |- ( ( B e. CH /\ C e. CH ) -> ( A vH ( B vH C ) ) = ( A vH ( C vH B ) ) ) |
| 11 | chjass | |- ( ( A e. CH /\ C e. CH /\ B e. CH ) -> ( ( A vH C ) vH B ) = ( A vH ( C vH B ) ) ) |
|
| 12 | 1 11 | mp3an1 | |- ( ( C e. CH /\ B e. CH ) -> ( ( A vH C ) vH B ) = ( A vH ( C vH B ) ) ) |
| 13 | 12 | ancoms | |- ( ( B e. CH /\ C e. CH ) -> ( ( A vH C ) vH B ) = ( A vH ( C vH B ) ) ) |
| 14 | 10 13 | eqtr4d | |- ( ( B e. CH /\ C e. CH ) -> ( A vH ( B vH C ) ) = ( ( A vH C ) vH B ) ) |
| 15 | 14 | adantr | |- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( A vH ( B vH C ) ) = ( ( A vH C ) vH B ) ) |
| 16 | simpl | |- ( ( B e. CH /\ C e. CH ) -> B e. CH ) |
|
| 17 | chjcl | |- ( ( A e. CH /\ C e. CH ) -> ( A vH C ) e. CH ) |
|
| 18 | 1 17 | mpan | |- ( C e. CH -> ( A vH C ) e. CH ) |
| 19 | 18 | adantl | |- ( ( B e. CH /\ C e. CH ) -> ( A vH C ) e. CH ) |
| 20 | chlej2 | |- ( ( ( B e. CH /\ ( A vH C ) e. CH /\ ( A vH C ) e. CH ) /\ B C_ ( A vH C ) ) -> ( ( A vH C ) vH B ) C_ ( ( A vH C ) vH ( A vH C ) ) ) |
|
| 21 | 20 | ex | |- ( ( B e. CH /\ ( A vH C ) e. CH /\ ( A vH C ) e. CH ) -> ( B C_ ( A vH C ) -> ( ( A vH C ) vH B ) C_ ( ( A vH C ) vH ( A vH C ) ) ) ) |
| 22 | 16 19 19 21 | syl3anc | |- ( ( B e. CH /\ C e. CH ) -> ( B C_ ( A vH C ) -> ( ( A vH C ) vH B ) C_ ( ( A vH C ) vH ( A vH C ) ) ) ) |
| 23 | 22 | imp | |- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( ( A vH C ) vH B ) C_ ( ( A vH C ) vH ( A vH C ) ) ) |
| 24 | 15 23 | eqsstrd | |- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( A vH ( B vH C ) ) C_ ( ( A vH C ) vH ( A vH C ) ) ) |
| 25 | chjidm | |- ( ( A vH C ) e. CH -> ( ( A vH C ) vH ( A vH C ) ) = ( A vH C ) ) |
|
| 26 | 18 25 | syl | |- ( C e. CH -> ( ( A vH C ) vH ( A vH C ) ) = ( A vH C ) ) |
| 27 | 26 | ad2antlr | |- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( ( A vH C ) vH ( A vH C ) ) = ( A vH C ) ) |
| 28 | 24 27 | sseqtrd | |- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( A vH ( B vH C ) ) C_ ( A vH C ) ) |
| 29 | simpr | |- ( ( B e. CH /\ C e. CH ) -> C e. CH ) |
|
| 30 | chjcl | |- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) e. CH ) |
|
| 31 | chub2 | |- ( ( C e. CH /\ B e. CH ) -> C C_ ( B vH C ) ) |
|
| 32 | 31 | ancoms | |- ( ( B e. CH /\ C e. CH ) -> C C_ ( B vH C ) ) |
| 33 | chlej2 | |- ( ( ( C e. CH /\ ( B vH C ) e. CH /\ A e. CH ) /\ C C_ ( B vH C ) ) -> ( A vH C ) C_ ( A vH ( B vH C ) ) ) |
|
| 34 | 1 33 | mp3anl3 | |- ( ( ( C e. CH /\ ( B vH C ) e. CH ) /\ C C_ ( B vH C ) ) -> ( A vH C ) C_ ( A vH ( B vH C ) ) ) |
| 35 | 29 30 32 34 | syl21anc | |- ( ( B e. CH /\ C e. CH ) -> ( A vH C ) C_ ( A vH ( B vH C ) ) ) |
| 36 | 35 | adantr | |- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( A vH C ) C_ ( A vH ( B vH C ) ) ) |
| 37 | 28 36 | eqssd | |- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( A vH ( B vH C ) ) = ( A vH C ) ) |
| 38 | 8 37 | sylan | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ B C_ ( A vH C ) ) -> ( A vH ( B vH C ) ) = ( A vH C ) ) |
| 39 | 38 | breq2d | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ B C_ ( A vH C ) ) -> ( A |
| 40 | 39 | adantrl | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( -. C C_ A /\ B C_ ( A vH C ) ) ) -> ( A |
| 41 | 5 40 | mpbird | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( -. C C_ A /\ B C_ ( A vH C ) ) ) -> A |
| 42 | 41 | ex | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( -. C C_ A /\ B C_ ( A vH C ) ) -> A |
| 43 | 30 1 | jctil | |- ( ( B e. CH /\ C e. CH ) -> ( A e. CH /\ ( B vH C ) e. CH ) ) |
| 44 | 6 7 43 | syl2an | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A e. CH /\ ( B vH C ) e. CH ) ) |
| 45 | cvexch | |- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( ( A i^i ( B vH C ) ) |
|
| 46 | 44 45 | syl | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( A i^i ( B vH C ) ) |
| 47 | 42 46 | sylibrd | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( -. C C_ A /\ B C_ ( A vH C ) ) -> ( A i^i ( B vH C ) ) |
| 48 | 47 | adantr | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ -. B = C ) -> ( ( -. C C_ A /\ B C_ ( A vH C ) ) -> ( A i^i ( B vH C ) ) |
| 49 | chincl | |- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( A i^i ( B vH C ) ) e. CH ) |
|
| 50 | 1 30 49 | sylancr | |- ( ( B e. CH /\ C e. CH ) -> ( A i^i ( B vH C ) ) e. CH ) |
| 51 | 6 7 50 | syl2an | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A i^i ( B vH C ) ) e. CH ) |
| 52 | simpl | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> B e. HAtoms ) |
|
| 53 | simpr | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> C e. HAtoms ) |
|
| 54 | atcvat2 | |- ( ( ( A i^i ( B vH C ) ) e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( -. B = C /\ ( A i^i ( B vH C ) ) |
|
| 55 | 51 52 53 54 | syl3anc | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( -. B = C /\ ( A i^i ( B vH C ) ) |
| 56 | 55 | expdimp | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ -. B = C ) -> ( ( A i^i ( B vH C ) ) |
| 57 | 48 56 | syld | |- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ -. B = C ) -> ( ( -. C C_ A /\ B C_ ( A vH C ) ) -> ( A i^i ( B vH C ) ) e. HAtoms ) ) |
| 58 | 57 | exp4b | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( -. B = C -> ( -. C C_ A -> ( B C_ ( A vH C ) -> ( A i^i ( B vH C ) ) e. HAtoms ) ) ) ) |
| 59 | 58 | imp4c | |- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) -> ( A i^i ( B vH C ) ) e. HAtoms ) ) |