This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cauchy-Schwarz-Bunjakovsky inequality for R^n. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csbrn.1 | |- ( ph -> A e. Fin ) |
|
| csbrn.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
||
| csbrn.3 | |- ( ( ph /\ k e. A ) -> C e. RR ) |
||
| Assertion | csbren | |- ( ph -> ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbrn.1 | |- ( ph -> A e. Fin ) |
|
| 2 | csbrn.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
|
| 3 | csbrn.3 | |- ( ( ph /\ k e. A ) -> C e. RR ) |
|
| 4 | 2cn | |- 2 e. CC |
|
| 5 | 2 3 | remulcld | |- ( ( ph /\ k e. A ) -> ( B x. C ) e. RR ) |
| 6 | 1 5 | fsumrecl | |- ( ph -> sum_ k e. A ( B x. C ) e. RR ) |
| 7 | 6 | recnd | |- ( ph -> sum_ k e. A ( B x. C ) e. CC ) |
| 8 | sqmul | |- ( ( 2 e. CC /\ sum_ k e. A ( B x. C ) e. CC ) -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) ) |
|
| 9 | 4 7 8 | sylancr | |- ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) ) |
| 10 | sq2 | |- ( 2 ^ 2 ) = 4 |
|
| 11 | 10 | oveq1i | |- ( ( 2 ^ 2 ) x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) = ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) |
| 12 | 9 11 | eqtrdi | |- ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) = ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) ) |
| 13 | 2 | resqcld | |- ( ( ph /\ k e. A ) -> ( B ^ 2 ) e. RR ) |
| 14 | 1 13 | fsumrecl | |- ( ph -> sum_ k e. A ( B ^ 2 ) e. RR ) |
| 15 | 2re | |- 2 e. RR |
|
| 16 | remulcl | |- ( ( 2 e. RR /\ sum_ k e. A ( B x. C ) e. RR ) -> ( 2 x. sum_ k e. A ( B x. C ) ) e. RR ) |
|
| 17 | 15 6 16 | sylancr | |- ( ph -> ( 2 x. sum_ k e. A ( B x. C ) ) e. RR ) |
| 18 | 3 | resqcld | |- ( ( ph /\ k e. A ) -> ( C ^ 2 ) e. RR ) |
| 19 | 1 18 | fsumrecl | |- ( ph -> sum_ k e. A ( C ^ 2 ) e. RR ) |
| 20 | 1 | adantr | |- ( ( ph /\ x e. RR ) -> A e. Fin ) |
| 21 | 13 | adantlr | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B ^ 2 ) e. RR ) |
| 22 | simplr | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> x e. RR ) |
|
| 23 | 22 | resqcld | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( x ^ 2 ) e. RR ) |
| 24 | 21 23 | remulcld | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B ^ 2 ) x. ( x ^ 2 ) ) e. RR ) |
| 25 | remulcl | |- ( ( 2 e. RR /\ ( B x. C ) e. RR ) -> ( 2 x. ( B x. C ) ) e. RR ) |
|
| 26 | 15 5 25 | sylancr | |- ( ( ph /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. RR ) |
| 27 | 26 | adantlr | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. RR ) |
| 28 | 27 22 | remulcld | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( 2 x. ( B x. C ) ) x. x ) e. RR ) |
| 29 | 24 28 | readdcld | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) e. RR ) |
| 30 | 18 | adantlr | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( C ^ 2 ) e. RR ) |
| 31 | 29 30 | readdcld | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) e. RR ) |
| 32 | 2 | adantlr | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> B e. RR ) |
| 33 | 32 22 | remulcld | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. x ) e. RR ) |
| 34 | 3 | adantlr | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> C e. RR ) |
| 35 | 33 34 | readdcld | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B x. x ) + C ) e. RR ) |
| 36 | 35 | sqge0d | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> 0 <_ ( ( ( B x. x ) + C ) ^ 2 ) ) |
| 37 | 33 | recnd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. x ) e. CC ) |
| 38 | 34 | recnd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> C e. CC ) |
| 39 | binom2 | |- ( ( ( B x. x ) e. CC /\ C e. CC ) -> ( ( ( B x. x ) + C ) ^ 2 ) = ( ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) + ( C ^ 2 ) ) ) |
|
| 40 | 37 38 39 | syl2anc | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B x. x ) + C ) ^ 2 ) = ( ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) + ( C ^ 2 ) ) ) |
| 41 | 32 | recnd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> B e. CC ) |
| 42 | 22 | recnd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> x e. CC ) |
| 43 | 41 42 | sqmuld | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B x. x ) ^ 2 ) = ( ( B ^ 2 ) x. ( x ^ 2 ) ) ) |
| 44 | 41 42 38 | mul32d | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B x. x ) x. C ) = ( ( B x. C ) x. x ) ) |
| 45 | 44 | oveq2d | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( ( B x. x ) x. C ) ) = ( 2 x. ( ( B x. C ) x. x ) ) ) |
| 46 | 2cnd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> 2 e. CC ) |
|
| 47 | 5 | adantlr | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. C ) e. RR ) |
| 48 | 47 | recnd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. C ) e. CC ) |
| 49 | 46 48 42 | mulassd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( 2 x. ( B x. C ) ) x. x ) = ( 2 x. ( ( B x. C ) x. x ) ) ) |
| 50 | 45 49 | eqtr4d | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( ( B x. x ) x. C ) ) = ( ( 2 x. ( B x. C ) ) x. x ) ) |
| 51 | 43 50 | oveq12d | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) = ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) ) |
| 52 | 51 | oveq1d | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) + ( C ^ 2 ) ) = ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) |
| 53 | 40 52 | eqtrd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B x. x ) + C ) ^ 2 ) = ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) |
| 54 | 36 53 | breqtrd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> 0 <_ ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) |
| 55 | 20 31 54 | fsumge0 | |- ( ( ph /\ x e. RR ) -> 0 <_ sum_ k e. A ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) |
| 56 | 24 | recnd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B ^ 2 ) x. ( x ^ 2 ) ) e. CC ) |
| 57 | 28 | recnd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( 2 x. ( B x. C ) ) x. x ) e. CC ) |
| 58 | 56 57 | addcld | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) e. CC ) |
| 59 | 30 | recnd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( C ^ 2 ) e. CC ) |
| 60 | 20 58 59 | fsumadd | |- ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) = ( sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) |
| 61 | 20 56 57 | fsumadd | |- ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) = ( sum_ k e. A ( ( B ^ 2 ) x. ( x ^ 2 ) ) + sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) ) |
| 62 | simpr | |- ( ( ph /\ x e. RR ) -> x e. RR ) |
|
| 63 | 62 | recnd | |- ( ( ph /\ x e. RR ) -> x e. CC ) |
| 64 | 63 | sqcld | |- ( ( ph /\ x e. RR ) -> ( x ^ 2 ) e. CC ) |
| 65 | 21 | recnd | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B ^ 2 ) e. CC ) |
| 66 | 20 64 65 | fsummulc1 | |- ( ( ph /\ x e. RR ) -> ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) = sum_ k e. A ( ( B ^ 2 ) x. ( x ^ 2 ) ) ) |
| 67 | 2cnd | |- ( ( ph /\ x e. RR ) -> 2 e. CC ) |
|
| 68 | 20 67 48 | fsummulc2 | |- ( ( ph /\ x e. RR ) -> ( 2 x. sum_ k e. A ( B x. C ) ) = sum_ k e. A ( 2 x. ( B x. C ) ) ) |
| 69 | 68 | oveq1d | |- ( ( ph /\ x e. RR ) -> ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) = ( sum_ k e. A ( 2 x. ( B x. C ) ) x. x ) ) |
| 70 | 26 | recnd | |- ( ( ph /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. CC ) |
| 71 | 70 | adantlr | |- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. CC ) |
| 72 | 20 63 71 | fsummulc1 | |- ( ( ph /\ x e. RR ) -> ( sum_ k e. A ( 2 x. ( B x. C ) ) x. x ) = sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) |
| 73 | 69 72 | eqtrd | |- ( ( ph /\ x e. RR ) -> ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) = sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) |
| 74 | 66 73 | oveq12d | |- ( ( ph /\ x e. RR ) -> ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) = ( sum_ k e. A ( ( B ^ 2 ) x. ( x ^ 2 ) ) + sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) ) |
| 75 | 61 74 | eqtr4d | |- ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) = ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) ) |
| 76 | 75 | oveq1d | |- ( ( ph /\ x e. RR ) -> ( sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) = ( ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) |
| 77 | 60 76 | eqtrd | |- ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) = ( ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) |
| 78 | 55 77 | breqtrd | |- ( ( ph /\ x e. RR ) -> 0 <_ ( ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) |
| 79 | 14 17 19 78 | discr | |- ( ph -> ( ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) - ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) <_ 0 ) |
| 80 | 17 | resqcld | |- ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) e. RR ) |
| 81 | 4re | |- 4 e. RR |
|
| 82 | 14 19 | remulcld | |- ( ph -> ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) e. RR ) |
| 83 | remulcl | |- ( ( 4 e. RR /\ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) e. RR ) -> ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) e. RR ) |
|
| 84 | 81 82 83 | sylancr | |- ( ph -> ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) e. RR ) |
| 85 | 80 84 | suble0d | |- ( ph -> ( ( ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) - ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) <_ 0 <-> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) ) |
| 86 | 79 85 | mpbid | |- ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) |
| 87 | 12 86 | eqbrtrrd | |- ( ph -> ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) |
| 88 | 6 | resqcld | |- ( ph -> ( sum_ k e. A ( B x. C ) ^ 2 ) e. RR ) |
| 89 | 81 | a1i | |- ( ph -> 4 e. RR ) |
| 90 | 4pos | |- 0 < 4 |
|
| 91 | 90 | a1i | |- ( ph -> 0 < 4 ) |
| 92 | lemul2 | |- ( ( ( sum_ k e. A ( B x. C ) ^ 2 ) e. RR /\ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) <-> ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) ) |
|
| 93 | 88 82 89 91 92 | syl112anc | |- ( ph -> ( ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) <-> ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) ) |
| 94 | 87 93 | mpbird | |- ( ph -> ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) |