This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos2t | |- ( A e. CC -> ( cos ` ( 2 x. A ) ) = ( ( 2 x. ( ( cos ` A ) ^ 2 ) ) - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 2 | 1 | sqcld | |- ( A e. CC -> ( ( cos ` A ) ^ 2 ) e. CC ) |
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | subsub3 | |- ( ( ( ( cos ` A ) ^ 2 ) e. CC /\ 1 e. CC /\ ( ( cos ` A ) ^ 2 ) e. CC ) -> ( ( ( cos ` A ) ^ 2 ) - ( 1 - ( ( cos ` A ) ^ 2 ) ) ) = ( ( ( ( cos ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) - 1 ) ) |
|
| 5 | 3 4 | mp3an2 | |- ( ( ( ( cos ` A ) ^ 2 ) e. CC /\ ( ( cos ` A ) ^ 2 ) e. CC ) -> ( ( ( cos ` A ) ^ 2 ) - ( 1 - ( ( cos ` A ) ^ 2 ) ) ) = ( ( ( ( cos ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) - 1 ) ) |
| 6 | 2 2 5 | syl2anc | |- ( A e. CC -> ( ( ( cos ` A ) ^ 2 ) - ( 1 - ( ( cos ` A ) ^ 2 ) ) ) = ( ( ( ( cos ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) - 1 ) ) |
| 7 | cosadd | |- ( ( A e. CC /\ A e. CC ) -> ( cos ` ( A + A ) ) = ( ( ( cos ` A ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` A ) ) ) ) |
|
| 8 | 7 | anidms | |- ( A e. CC -> ( cos ` ( A + A ) ) = ( ( ( cos ` A ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` A ) ) ) ) |
| 9 | 2times | |- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
|
| 10 | 9 | fveq2d | |- ( A e. CC -> ( cos ` ( 2 x. A ) ) = ( cos ` ( A + A ) ) ) |
| 11 | 1 | sqvald | |- ( A e. CC -> ( ( cos ` A ) ^ 2 ) = ( ( cos ` A ) x. ( cos ` A ) ) ) |
| 12 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 13 | 12 | sqvald | |- ( A e. CC -> ( ( sin ` A ) ^ 2 ) = ( ( sin ` A ) x. ( sin ` A ) ) ) |
| 14 | 11 13 | oveq12d | |- ( A e. CC -> ( ( ( cos ` A ) ^ 2 ) - ( ( sin ` A ) ^ 2 ) ) = ( ( ( cos ` A ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` A ) ) ) ) |
| 15 | 8 10 14 | 3eqtr4d | |- ( A e. CC -> ( cos ` ( 2 x. A ) ) = ( ( ( cos ` A ) ^ 2 ) - ( ( sin ` A ) ^ 2 ) ) ) |
| 16 | 12 | sqcld | |- ( A e. CC -> ( ( sin ` A ) ^ 2 ) e. CC ) |
| 17 | 16 2 | addcomd | |- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) ) |
| 18 | sincossq | |- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
|
| 19 | 17 18 | eqtr3d | |- ( A e. CC -> ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) = 1 ) |
| 20 | subadd | |- ( ( 1 e. CC /\ ( ( cos ` A ) ^ 2 ) e. CC /\ ( ( sin ` A ) ^ 2 ) e. CC ) -> ( ( 1 - ( ( cos ` A ) ^ 2 ) ) = ( ( sin ` A ) ^ 2 ) <-> ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) = 1 ) ) |
|
| 21 | 3 2 16 20 | mp3an2i | |- ( A e. CC -> ( ( 1 - ( ( cos ` A ) ^ 2 ) ) = ( ( sin ` A ) ^ 2 ) <-> ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) = 1 ) ) |
| 22 | 19 21 | mpbird | |- ( A e. CC -> ( 1 - ( ( cos ` A ) ^ 2 ) ) = ( ( sin ` A ) ^ 2 ) ) |
| 23 | 22 | oveq2d | |- ( A e. CC -> ( ( ( cos ` A ) ^ 2 ) - ( 1 - ( ( cos ` A ) ^ 2 ) ) ) = ( ( ( cos ` A ) ^ 2 ) - ( ( sin ` A ) ^ 2 ) ) ) |
| 24 | 15 23 | eqtr4d | |- ( A e. CC -> ( cos ` ( 2 x. A ) ) = ( ( ( cos ` A ) ^ 2 ) - ( 1 - ( ( cos ` A ) ^ 2 ) ) ) ) |
| 25 | 2 | 2timesd | |- ( A e. CC -> ( 2 x. ( ( cos ` A ) ^ 2 ) ) = ( ( ( cos ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) |
| 26 | 25 | oveq1d | |- ( A e. CC -> ( ( 2 x. ( ( cos ` A ) ^ 2 ) ) - 1 ) = ( ( ( ( cos ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) - 1 ) ) |
| 27 | 6 24 26 | 3eqtr4d | |- ( A e. CC -> ( cos ` ( 2 x. A ) ) = ( ( 2 x. ( ( cos ` A ) ^ 2 ) ) - 1 ) ) |