This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqabs | |- ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( abs ` A ) = ( abs ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqcl | |- ( A e. RR -> ( A ^ 2 ) e. RR ) |
|
| 2 | sqge0 | |- ( A e. RR -> 0 <_ ( A ^ 2 ) ) |
|
| 3 | absid | |- ( ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) -> ( abs ` ( A ^ 2 ) ) = ( A ^ 2 ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( A e. RR -> ( abs ` ( A ^ 2 ) ) = ( A ^ 2 ) ) |
| 5 | recn | |- ( A e. RR -> A e. CC ) |
|
| 6 | 2nn0 | |- 2 e. NN0 |
|
| 7 | absexp | |- ( ( A e. CC /\ 2 e. NN0 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) ) |
|
| 8 | 5 6 7 | sylancl | |- ( A e. RR -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) ) |
| 9 | 4 8 | eqtr3d | |- ( A e. RR -> ( A ^ 2 ) = ( ( abs ` A ) ^ 2 ) ) |
| 10 | resqcl | |- ( B e. RR -> ( B ^ 2 ) e. RR ) |
|
| 11 | sqge0 | |- ( B e. RR -> 0 <_ ( B ^ 2 ) ) |
|
| 12 | absid | |- ( ( ( B ^ 2 ) e. RR /\ 0 <_ ( B ^ 2 ) ) -> ( abs ` ( B ^ 2 ) ) = ( B ^ 2 ) ) |
|
| 13 | 10 11 12 | syl2anc | |- ( B e. RR -> ( abs ` ( B ^ 2 ) ) = ( B ^ 2 ) ) |
| 14 | recn | |- ( B e. RR -> B e. CC ) |
|
| 15 | absexp | |- ( ( B e. CC /\ 2 e. NN0 ) -> ( abs ` ( B ^ 2 ) ) = ( ( abs ` B ) ^ 2 ) ) |
|
| 16 | 14 6 15 | sylancl | |- ( B e. RR -> ( abs ` ( B ^ 2 ) ) = ( ( abs ` B ) ^ 2 ) ) |
| 17 | 13 16 | eqtr3d | |- ( B e. RR -> ( B ^ 2 ) = ( ( abs ` B ) ^ 2 ) ) |
| 18 | 9 17 | eqeqan12d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( ( abs ` A ) ^ 2 ) = ( ( abs ` B ) ^ 2 ) ) ) |
| 19 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 20 | absge0 | |- ( A e. CC -> 0 <_ ( abs ` A ) ) |
|
| 21 | 19 20 | jca | |- ( A e. CC -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
| 22 | abscl | |- ( B e. CC -> ( abs ` B ) e. RR ) |
|
| 23 | absge0 | |- ( B e. CC -> 0 <_ ( abs ` B ) ) |
|
| 24 | 22 23 | jca | |- ( B e. CC -> ( ( abs ` B ) e. RR /\ 0 <_ ( abs ` B ) ) ) |
| 25 | sq11 | |- ( ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) /\ ( ( abs ` B ) e. RR /\ 0 <_ ( abs ` B ) ) ) -> ( ( ( abs ` A ) ^ 2 ) = ( ( abs ` B ) ^ 2 ) <-> ( abs ` A ) = ( abs ` B ) ) ) |
|
| 26 | 21 24 25 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` A ) ^ 2 ) = ( ( abs ` B ) ^ 2 ) <-> ( abs ` A ) = ( abs ` B ) ) ) |
| 27 | 5 14 26 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( abs ` A ) ^ 2 ) = ( ( abs ` B ) ^ 2 ) <-> ( abs ` A ) = ( abs ` B ) ) ) |
| 28 | 18 27 | bitrd | |- ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( abs ` A ) = ( abs ` B ) ) ) |