This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos2tsin | |- ( A e. CC -> ( cos ` ( 2 x. A ) ) = ( 1 - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cos2t | |- ( A e. CC -> ( cos ` ( 2 x. A ) ) = ( ( 2 x. ( ( cos ` A ) ^ 2 ) ) - 1 ) ) |
|
| 2 | 2cn | |- 2 e. CC |
|
| 3 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 4 | 3 | sqcld | |- ( A e. CC -> ( ( sin ` A ) ^ 2 ) e. CC ) |
| 5 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 6 | 5 | sqcld | |- ( A e. CC -> ( ( cos ` A ) ^ 2 ) e. CC ) |
| 7 | adddi | |- ( ( 2 e. CC /\ ( ( sin ` A ) ^ 2 ) e. CC /\ ( ( cos ` A ) ^ 2 ) e. CC ) -> ( 2 x. ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) = ( ( 2 x. ( ( sin ` A ) ^ 2 ) ) + ( 2 x. ( ( cos ` A ) ^ 2 ) ) ) ) |
|
| 8 | 2 4 6 7 | mp3an2i | |- ( A e. CC -> ( 2 x. ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) = ( ( 2 x. ( ( sin ` A ) ^ 2 ) ) + ( 2 x. ( ( cos ` A ) ^ 2 ) ) ) ) |
| 9 | sincossq | |- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
|
| 10 | 9 | oveq2d | |- ( A e. CC -> ( 2 x. ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) = ( 2 x. 1 ) ) |
| 11 | 8 10 | eqtr3d | |- ( A e. CC -> ( ( 2 x. ( ( sin ` A ) ^ 2 ) ) + ( 2 x. ( ( cos ` A ) ^ 2 ) ) ) = ( 2 x. 1 ) ) |
| 12 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 13 | 11 12 | eqtrdi | |- ( A e. CC -> ( ( 2 x. ( ( sin ` A ) ^ 2 ) ) + ( 2 x. ( ( cos ` A ) ^ 2 ) ) ) = 2 ) |
| 14 | mulcl | |- ( ( 2 e. CC /\ ( ( sin ` A ) ^ 2 ) e. CC ) -> ( 2 x. ( ( sin ` A ) ^ 2 ) ) e. CC ) |
|
| 15 | 2 4 14 | sylancr | |- ( A e. CC -> ( 2 x. ( ( sin ` A ) ^ 2 ) ) e. CC ) |
| 16 | mulcl | |- ( ( 2 e. CC /\ ( ( cos ` A ) ^ 2 ) e. CC ) -> ( 2 x. ( ( cos ` A ) ^ 2 ) ) e. CC ) |
|
| 17 | 2 6 16 | sylancr | |- ( A e. CC -> ( 2 x. ( ( cos ` A ) ^ 2 ) ) e. CC ) |
| 18 | subadd | |- ( ( 2 e. CC /\ ( 2 x. ( ( sin ` A ) ^ 2 ) ) e. CC /\ ( 2 x. ( ( cos ` A ) ^ 2 ) ) e. CC ) -> ( ( 2 - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) = ( 2 x. ( ( cos ` A ) ^ 2 ) ) <-> ( ( 2 x. ( ( sin ` A ) ^ 2 ) ) + ( 2 x. ( ( cos ` A ) ^ 2 ) ) ) = 2 ) ) |
|
| 19 | 2 15 17 18 | mp3an2i | |- ( A e. CC -> ( ( 2 - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) = ( 2 x. ( ( cos ` A ) ^ 2 ) ) <-> ( ( 2 x. ( ( sin ` A ) ^ 2 ) ) + ( 2 x. ( ( cos ` A ) ^ 2 ) ) ) = 2 ) ) |
| 20 | 13 19 | mpbird | |- ( A e. CC -> ( 2 - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) = ( 2 x. ( ( cos ` A ) ^ 2 ) ) ) |
| 21 | 20 | oveq1d | |- ( A e. CC -> ( ( 2 - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) - 1 ) = ( ( 2 x. ( ( cos ` A ) ^ 2 ) ) - 1 ) ) |
| 22 | ax-1cn | |- 1 e. CC |
|
| 23 | sub32 | |- ( ( 2 e. CC /\ ( 2 x. ( ( sin ` A ) ^ 2 ) ) e. CC /\ 1 e. CC ) -> ( ( 2 - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) - 1 ) = ( ( 2 - 1 ) - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) ) |
|
| 24 | 2 22 23 | mp3an13 | |- ( ( 2 x. ( ( sin ` A ) ^ 2 ) ) e. CC -> ( ( 2 - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) - 1 ) = ( ( 2 - 1 ) - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) ) |
| 25 | 15 24 | syl | |- ( A e. CC -> ( ( 2 - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) - 1 ) = ( ( 2 - 1 ) - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) ) |
| 26 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 27 | 26 | oveq1i | |- ( ( 2 - 1 ) - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) = ( 1 - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) |
| 28 | 25 27 | eqtrdi | |- ( A e. CC -> ( ( 2 - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) - 1 ) = ( 1 - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) ) |
| 29 | 1 21 28 | 3eqtr2d | |- ( A e. CC -> ( cos ` ( 2 x. A ) ) = ( 1 - ( 2 x. ( ( sin ` A ) ^ 2 ) ) ) ) |