This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive real closure of the tangent function. (Contributed by Mario Carneiro, 29-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanrpcl | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( tan ` A ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> A e. RR ) |
|
| 2 | 1 | recnd | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> A e. CC ) |
| 3 | 1 | recoscld | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( cos ` A ) e. RR ) |
| 4 | sincosq1sgn | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
|
| 5 | 4 | simprd | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> 0 < ( cos ` A ) ) |
| 6 | 3 5 | elrpd | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( cos ` A ) e. RR+ ) |
| 7 | 6 | rpne0d | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( cos ` A ) =/= 0 ) |
| 8 | tanval | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
|
| 9 | 2 7 8 | syl2anc | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
| 10 | 1 | resincld | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( sin ` A ) e. RR ) |
| 11 | 4 | simpld | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> 0 < ( sin ` A ) ) |
| 12 | 10 11 | elrpd | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( sin ` A ) e. RR+ ) |
| 13 | 12 6 | rpdivcld | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( ( sin ` A ) / ( cos ` A ) ) e. RR+ ) |
| 14 | 9 13 | eqeltrd | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( tan ` A ) e. RR+ ) |