This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of an arctangent. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosatan | |- ( A e. dom arctan -> ( cos ` ( arctan ` A ) ) = ( 1 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atancl | |- ( A e. dom arctan -> ( arctan ` A ) e. CC ) |
|
| 2 | cosval | |- ( ( arctan ` A ) e. CC -> ( cos ` ( arctan ` A ) ) = ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) / 2 ) ) |
|
| 3 | 1 2 | syl | |- ( A e. dom arctan -> ( cos ` ( arctan ` A ) ) = ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) / 2 ) ) |
| 4 | efiatan2 | |- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
|
| 5 | ax-icn | |- _i e. CC |
|
| 6 | mulneg12 | |- ( ( _i e. CC /\ ( arctan ` A ) e. CC ) -> ( -u _i x. ( arctan ` A ) ) = ( _i x. -u ( arctan ` A ) ) ) |
|
| 7 | 5 1 6 | sylancr | |- ( A e. dom arctan -> ( -u _i x. ( arctan ` A ) ) = ( _i x. -u ( arctan ` A ) ) ) |
| 8 | atanneg | |- ( A e. dom arctan -> ( arctan ` -u A ) = -u ( arctan ` A ) ) |
|
| 9 | 8 | oveq2d | |- ( A e. dom arctan -> ( _i x. ( arctan ` -u A ) ) = ( _i x. -u ( arctan ` A ) ) ) |
| 10 | 7 9 | eqtr4d | |- ( A e. dom arctan -> ( -u _i x. ( arctan ` A ) ) = ( _i x. ( arctan ` -u A ) ) ) |
| 11 | 10 | fveq2d | |- ( A e. dom arctan -> ( exp ` ( -u _i x. ( arctan ` A ) ) ) = ( exp ` ( _i x. ( arctan ` -u A ) ) ) ) |
| 12 | atandmneg | |- ( A e. dom arctan -> -u A e. dom arctan ) |
|
| 13 | efiatan2 | |- ( -u A e. dom arctan -> ( exp ` ( _i x. ( arctan ` -u A ) ) ) = ( ( 1 + ( _i x. -u A ) ) / ( sqrt ` ( 1 + ( -u A ^ 2 ) ) ) ) ) |
|
| 14 | 12 13 | syl | |- ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` -u A ) ) ) = ( ( 1 + ( _i x. -u A ) ) / ( sqrt ` ( 1 + ( -u A ^ 2 ) ) ) ) ) |
| 15 | atandm4 | |- ( A e. dom arctan <-> ( A e. CC /\ ( 1 + ( A ^ 2 ) ) =/= 0 ) ) |
|
| 16 | 15 | simplbi | |- ( A e. dom arctan -> A e. CC ) |
| 17 | mulneg2 | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
|
| 18 | 5 16 17 | sylancr | |- ( A e. dom arctan -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 19 | 18 | oveq2d | |- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 + -u ( _i x. A ) ) ) |
| 20 | ax-1cn | |- 1 e. CC |
|
| 21 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 22 | 5 16 21 | sylancr | |- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 23 | negsub | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
|
| 24 | 20 22 23 | sylancr | |- ( A e. dom arctan -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
| 25 | 19 24 | eqtrd | |- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 - ( _i x. A ) ) ) |
| 26 | sqneg | |- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
|
| 27 | 16 26 | syl | |- ( A e. dom arctan -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
| 28 | 27 | oveq2d | |- ( A e. dom arctan -> ( 1 + ( -u A ^ 2 ) ) = ( 1 + ( A ^ 2 ) ) ) |
| 29 | 28 | fveq2d | |- ( A e. dom arctan -> ( sqrt ` ( 1 + ( -u A ^ 2 ) ) ) = ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) |
| 30 | 25 29 | oveq12d | |- ( A e. dom arctan -> ( ( 1 + ( _i x. -u A ) ) / ( sqrt ` ( 1 + ( -u A ^ 2 ) ) ) ) = ( ( 1 - ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 31 | 11 14 30 | 3eqtrd | |- ( A e. dom arctan -> ( exp ` ( -u _i x. ( arctan ` A ) ) ) = ( ( 1 - ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 32 | 4 31 | oveq12d | |- ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) = ( ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) + ( ( 1 - ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) ) |
| 33 | addcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
|
| 34 | 20 22 33 | sylancr | |- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 35 | subcl | |- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
|
| 36 | 20 22 35 | sylancr | |- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 37 | 16 | sqcld | |- ( A e. dom arctan -> ( A ^ 2 ) e. CC ) |
| 38 | addcl | |- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 + ( A ^ 2 ) ) e. CC ) |
|
| 39 | 20 37 38 | sylancr | |- ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) e. CC ) |
| 40 | 39 | sqrtcld | |- ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC ) |
| 41 | 39 | sqsqrtd | |- ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) = ( 1 + ( A ^ 2 ) ) ) |
| 42 | 15 | simprbi | |- ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) =/= 0 ) |
| 43 | 41 42 | eqnetrd | |- ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 ) |
| 44 | sqne0 | |- ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) |
|
| 45 | 40 44 | syl | |- ( A e. dom arctan -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) |
| 46 | 43 45 | mpbid | |- ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) |
| 47 | 34 36 40 46 | divdird | |- ( A e. dom arctan -> ( ( ( 1 + ( _i x. A ) ) + ( 1 - ( _i x. A ) ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) + ( ( 1 - ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) ) |
| 48 | 20 | a1i | |- ( A e. dom arctan -> 1 e. CC ) |
| 49 | 48 22 48 | ppncand | |- ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) + ( 1 - ( _i x. A ) ) ) = ( 1 + 1 ) ) |
| 50 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 51 | 49 50 | eqtr4di | |- ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) + ( 1 - ( _i x. A ) ) ) = 2 ) |
| 52 | 51 | oveq1d | |- ( A e. dom arctan -> ( ( ( 1 + ( _i x. A ) ) + ( 1 - ( _i x. A ) ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 53 | 32 47 52 | 3eqtr2d | |- ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) = ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 54 | 53 | oveq1d | |- ( A e. dom arctan -> ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) + ( exp ` ( -u _i x. ( arctan ` A ) ) ) ) / 2 ) = ( ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / 2 ) ) |
| 55 | 2cnd | |- ( A e. dom arctan -> 2 e. CC ) |
|
| 56 | 2ne0 | |- 2 =/= 0 |
|
| 57 | 56 | a1i | |- ( A e. dom arctan -> 2 =/= 0 ) |
| 58 | 55 40 55 46 57 | divdiv32d | |- ( A e. dom arctan -> ( ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / 2 ) = ( ( 2 / 2 ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 59 | 2div2e1 | |- ( 2 / 2 ) = 1 |
|
| 60 | 59 | oveq1i | |- ( ( 2 / 2 ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( 1 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) |
| 61 | 58 60 | eqtrdi | |- ( A e. dom arctan -> ( ( 2 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / 2 ) = ( 1 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |
| 62 | 3 54 61 | 3eqtrd | |- ( A e. dom arctan -> ( cos ` ( arctan ` A ) ) = ( 1 / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |