This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of an arctangent. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosatan | ⊢ ( 𝐴 ∈ dom arctan → ( cos ‘ ( arctan ‘ 𝐴 ) ) = ( 1 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atancl | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | cosval | ⊢ ( ( arctan ‘ 𝐴 ) ∈ ℂ → ( cos ‘ ( arctan ‘ 𝐴 ) ) = ( ( ( exp ‘ ( i · ( arctan ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arctan ‘ 𝐴 ) ) ) ) / 2 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ dom arctan → ( cos ‘ ( arctan ‘ 𝐴 ) ) = ( ( ( exp ‘ ( i · ( arctan ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arctan ‘ 𝐴 ) ) ) ) / 2 ) ) |
| 4 | efiatan2 | ⊢ ( 𝐴 ∈ dom arctan → ( exp ‘ ( i · ( arctan ‘ 𝐴 ) ) ) = ( ( 1 + ( i · 𝐴 ) ) / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) | |
| 5 | ax-icn | ⊢ i ∈ ℂ | |
| 6 | mulneg12 | ⊢ ( ( i ∈ ℂ ∧ ( arctan ‘ 𝐴 ) ∈ ℂ ) → ( - i · ( arctan ‘ 𝐴 ) ) = ( i · - ( arctan ‘ 𝐴 ) ) ) | |
| 7 | 5 1 6 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( - i · ( arctan ‘ 𝐴 ) ) = ( i · - ( arctan ‘ 𝐴 ) ) ) |
| 8 | atanneg | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ - 𝐴 ) = - ( arctan ‘ 𝐴 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( i · ( arctan ‘ - 𝐴 ) ) = ( i · - ( arctan ‘ 𝐴 ) ) ) |
| 10 | 7 9 | eqtr4d | ⊢ ( 𝐴 ∈ dom arctan → ( - i · ( arctan ‘ 𝐴 ) ) = ( i · ( arctan ‘ - 𝐴 ) ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( exp ‘ ( - i · ( arctan ‘ 𝐴 ) ) ) = ( exp ‘ ( i · ( arctan ‘ - 𝐴 ) ) ) ) |
| 12 | atandmneg | ⊢ ( 𝐴 ∈ dom arctan → - 𝐴 ∈ dom arctan ) | |
| 13 | efiatan2 | ⊢ ( - 𝐴 ∈ dom arctan → ( exp ‘ ( i · ( arctan ‘ - 𝐴 ) ) ) = ( ( 1 + ( i · - 𝐴 ) ) / ( √ ‘ ( 1 + ( - 𝐴 ↑ 2 ) ) ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐴 ∈ dom arctan → ( exp ‘ ( i · ( arctan ‘ - 𝐴 ) ) ) = ( ( 1 + ( i · - 𝐴 ) ) / ( √ ‘ ( 1 + ( - 𝐴 ↑ 2 ) ) ) ) ) |
| 15 | atandm4 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) ) | |
| 16 | 15 | simplbi | ⊢ ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ ) |
| 17 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) | |
| 18 | 5 16 17 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · - 𝐴 ) ) = ( 1 + - ( i · 𝐴 ) ) ) |
| 20 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 21 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 22 | 5 16 21 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( i · 𝐴 ) ∈ ℂ ) |
| 23 | negsub | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + - ( i · 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) | |
| 24 | 20 22 23 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + - ( i · 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 25 | 19 24 | eqtrd | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · - 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 26 | sqneg | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 27 | 16 26 | syl | ⊢ ( 𝐴 ∈ dom arctan → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 28 | 27 | oveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( - 𝐴 ↑ 2 ) ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 29 | 28 | fveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( √ ‘ ( 1 + ( - 𝐴 ↑ 2 ) ) ) = ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) |
| 30 | 25 29 | oveq12d | ⊢ ( 𝐴 ∈ dom arctan → ( ( 1 + ( i · - 𝐴 ) ) / ( √ ‘ ( 1 + ( - 𝐴 ↑ 2 ) ) ) ) = ( ( 1 − ( i · 𝐴 ) ) / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) |
| 31 | 11 14 30 | 3eqtrd | ⊢ ( 𝐴 ∈ dom arctan → ( exp ‘ ( - i · ( arctan ‘ 𝐴 ) ) ) = ( ( 1 − ( i · 𝐴 ) ) / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) |
| 32 | 4 31 | oveq12d | ⊢ ( 𝐴 ∈ dom arctan → ( ( exp ‘ ( i · ( arctan ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arctan ‘ 𝐴 ) ) ) ) = ( ( ( 1 + ( i · 𝐴 ) ) / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) + ( ( 1 − ( i · 𝐴 ) ) / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 33 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) | |
| 34 | 20 22 33 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 35 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) | |
| 36 | 20 22 35 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 37 | 16 | sqcld | ⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 38 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 39 | 20 37 38 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 40 | 39 | sqrtcld | ⊢ ( 𝐴 ∈ dom arctan → ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 41 | 39 | sqsqrtd | ⊢ ( 𝐴 ∈ dom arctan → ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 42 | 15 | simprbi | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) |
| 43 | 41 42 | eqnetrd | ⊢ ( 𝐴 ∈ dom arctan → ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ≠ 0 ) |
| 44 | sqne0 | ⊢ ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ∈ ℂ → ( ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ≠ 0 ↔ ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ≠ 0 ) ) | |
| 45 | 40 44 | syl | ⊢ ( 𝐴 ∈ dom arctan → ( ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ≠ 0 ↔ ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ≠ 0 ) ) |
| 46 | 43 45 | mpbid | ⊢ ( 𝐴 ∈ dom arctan → ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ≠ 0 ) |
| 47 | 34 36 40 46 | divdird | ⊢ ( 𝐴 ∈ dom arctan → ( ( ( 1 + ( i · 𝐴 ) ) + ( 1 − ( i · 𝐴 ) ) ) / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) = ( ( ( 1 + ( i · 𝐴 ) ) / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) + ( ( 1 − ( i · 𝐴 ) ) / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 48 | 20 | a1i | ⊢ ( 𝐴 ∈ dom arctan → 1 ∈ ℂ ) |
| 49 | 48 22 48 | ppncand | ⊢ ( 𝐴 ∈ dom arctan → ( ( 1 + ( i · 𝐴 ) ) + ( 1 − ( i · 𝐴 ) ) ) = ( 1 + 1 ) ) |
| 50 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 51 | 49 50 | eqtr4di | ⊢ ( 𝐴 ∈ dom arctan → ( ( 1 + ( i · 𝐴 ) ) + ( 1 − ( i · 𝐴 ) ) ) = 2 ) |
| 52 | 51 | oveq1d | ⊢ ( 𝐴 ∈ dom arctan → ( ( ( 1 + ( i · 𝐴 ) ) + ( 1 − ( i · 𝐴 ) ) ) / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) = ( 2 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) |
| 53 | 32 47 52 | 3eqtr2d | ⊢ ( 𝐴 ∈ dom arctan → ( ( exp ‘ ( i · ( arctan ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arctan ‘ 𝐴 ) ) ) ) = ( 2 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) |
| 54 | 53 | oveq1d | ⊢ ( 𝐴 ∈ dom arctan → ( ( ( exp ‘ ( i · ( arctan ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arctan ‘ 𝐴 ) ) ) ) / 2 ) = ( ( 2 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) / 2 ) ) |
| 55 | 2cnd | ⊢ ( 𝐴 ∈ dom arctan → 2 ∈ ℂ ) | |
| 56 | 2ne0 | ⊢ 2 ≠ 0 | |
| 57 | 56 | a1i | ⊢ ( 𝐴 ∈ dom arctan → 2 ≠ 0 ) |
| 58 | 55 40 55 46 57 | divdiv32d | ⊢ ( 𝐴 ∈ dom arctan → ( ( 2 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) / 2 ) = ( ( 2 / 2 ) / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) |
| 59 | 2div2e1 | ⊢ ( 2 / 2 ) = 1 | |
| 60 | 59 | oveq1i | ⊢ ( ( 2 / 2 ) / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) = ( 1 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) |
| 61 | 58 60 | eqtrdi | ⊢ ( 𝐴 ∈ dom arctan → ( ( 2 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) / 2 ) = ( 1 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) |
| 62 | 3 54 61 | 3eqtrd | ⊢ ( 𝐴 ∈ dom arctan → ( cos ‘ ( arctan ‘ 𝐴 ) ) = ( 1 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) |