This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 1-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfffval.o | |- O = ( comf ` C ) |
|
| comfffval.b | |- B = ( Base ` C ) |
||
| comfffval.h | |- H = ( Hom ` C ) |
||
| comfffval.x | |- .x. = ( comp ` C ) |
||
| Assertion | comfffval | |- O = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval.o | |- O = ( comf ` C ) |
|
| 2 | comfffval.b | |- B = ( Base ` C ) |
|
| 3 | comfffval.h | |- H = ( Hom ` C ) |
|
| 4 | comfffval.x | |- .x. = ( comp ` C ) |
|
| 5 | fveq2 | |- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
|
| 6 | 5 2 | eqtr4di | |- ( c = C -> ( Base ` c ) = B ) |
| 7 | 6 | sqxpeqd | |- ( c = C -> ( ( Base ` c ) X. ( Base ` c ) ) = ( B X. B ) ) |
| 8 | fveq2 | |- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
|
| 9 | 8 3 | eqtr4di | |- ( c = C -> ( Hom ` c ) = H ) |
| 10 | 9 | oveqd | |- ( c = C -> ( ( 2nd ` x ) ( Hom ` c ) y ) = ( ( 2nd ` x ) H y ) ) |
| 11 | 9 | fveq1d | |- ( c = C -> ( ( Hom ` c ) ` x ) = ( H ` x ) ) |
| 12 | fveq2 | |- ( c = C -> ( comp ` c ) = ( comp ` C ) ) |
|
| 13 | 12 4 | eqtr4di | |- ( c = C -> ( comp ` c ) = .x. ) |
| 14 | 13 | oveqd | |- ( c = C -> ( x ( comp ` c ) y ) = ( x .x. y ) ) |
| 15 | 14 | oveqd | |- ( c = C -> ( g ( x ( comp ` c ) y ) f ) = ( g ( x .x. y ) f ) ) |
| 16 | 10 11 15 | mpoeq123dv | |- ( c = C -> ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) = ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) |
| 17 | 7 6 16 | mpoeq123dv | |- ( c = C -> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) , y e. ( Base ` c ) |-> ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) ) |
| 18 | df-comf | |- comf = ( c e. _V |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) , y e. ( Base ` c ) |-> ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) ) ) |
|
| 19 | 2 | fvexi | |- B e. _V |
| 20 | 19 19 | xpex | |- ( B X. B ) e. _V |
| 21 | 20 19 | mpoex | |- ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) e. _V |
| 22 | 17 18 21 | fvmpt | |- ( C e. _V -> ( comf ` C ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) ) |
| 23 | fvprc | |- ( -. C e. _V -> ( comf ` C ) = (/) ) |
|
| 24 | fvprc | |- ( -. C e. _V -> ( Base ` C ) = (/) ) |
|
| 25 | 2 24 | eqtrid | |- ( -. C e. _V -> B = (/) ) |
| 26 | 25 | olcd | |- ( -. C e. _V -> ( ( B X. B ) = (/) \/ B = (/) ) ) |
| 27 | 0mpo0 | |- ( ( ( B X. B ) = (/) \/ B = (/) ) -> ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) = (/) ) |
|
| 28 | 26 27 | syl | |- ( -. C e. _V -> ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) = (/) ) |
| 29 | 23 28 | eqtr4d | |- ( -. C e. _V -> ( comf ` C ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) ) |
| 30 | 22 29 | pm2.61i | |- ( comf ` C ) = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) |
| 31 | 1 30 | eqtri | |- O = ( x e. ( B X. B ) , y e. B |-> ( g e. ( ( 2nd ` x ) H y ) , f e. ( H ` x ) |-> ( g ( x .x. y ) f ) ) ) |