This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homfeqval.b | |- B = ( Base ` C ) |
|
| homfeqval.h | |- H = ( Hom ` C ) |
||
| homfeqval.j | |- J = ( Hom ` D ) |
||
| homfeqval.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
||
| homfeqval.x | |- ( ph -> X e. B ) |
||
| homfeqval.y | |- ( ph -> Y e. B ) |
||
| Assertion | homfeqval | |- ( ph -> ( X H Y ) = ( X J Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homfeqval.b | |- B = ( Base ` C ) |
|
| 2 | homfeqval.h | |- H = ( Hom ` C ) |
|
| 3 | homfeqval.j | |- J = ( Hom ` D ) |
|
| 4 | homfeqval.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 5 | homfeqval.x | |- ( ph -> X e. B ) |
|
| 6 | homfeqval.y | |- ( ph -> Y e. B ) |
|
| 7 | 4 | oveqd | |- ( ph -> ( X ( Homf ` C ) Y ) = ( X ( Homf ` D ) Y ) ) |
| 8 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 9 | 8 1 2 5 6 | homfval | |- ( ph -> ( X ( Homf ` C ) Y ) = ( X H Y ) ) |
| 10 | eqid | |- ( Homf ` D ) = ( Homf ` D ) |
|
| 11 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 12 | 4 | homfeqbas | |- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 13 | 1 12 | eqtrid | |- ( ph -> B = ( Base ` D ) ) |
| 14 | 5 13 | eleqtrd | |- ( ph -> X e. ( Base ` D ) ) |
| 15 | 6 13 | eleqtrd | |- ( ph -> Y e. ( Base ` D ) ) |
| 16 | 10 11 3 14 15 | homfval | |- ( ph -> ( X ( Homf ` D ) Y ) = ( X J Y ) ) |
| 17 | 7 9 16 | 3eqtr3d | |- ( ph -> ( X H Y ) = ( X J Y ) ) |