This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1add.y | |- Y = ( Poly1 ` R ) |
|
| coe1add.b | |- B = ( Base ` Y ) |
||
| coe1add.p | |- .+b = ( +g ` Y ) |
||
| coe1add.q | |- .+ = ( +g ` R ) |
||
| Assertion | coe1add | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .+b G ) ) = ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1add.y | |- Y = ( Poly1 ` R ) |
|
| 2 | coe1add.b | |- B = ( Base ` Y ) |
|
| 3 | coe1add.p | |- .+b = ( +g ` Y ) |
|
| 4 | coe1add.q | |- .+ = ( +g ` R ) |
|
| 5 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 6 | 1 2 | ply1bas | |- B = ( Base ` ( 1o mPoly R ) ) |
| 7 | 1 5 3 | ply1plusg | |- .+b = ( +g ` ( 1o mPoly R ) ) |
| 8 | simp2 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> F e. B ) |
|
| 9 | simp3 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> G e. B ) |
|
| 10 | 5 6 4 7 8 9 | mpladd | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( F .+b G ) = ( F oF .+ G ) ) |
| 11 | 10 | coeq1d | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( ( F .+b G ) o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) = ( ( F oF .+ G ) o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 12 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 13 | 1 2 12 | ply1basf | |- ( F e. B -> F : ( NN0 ^m 1o ) --> ( Base ` R ) ) |
| 14 | 13 | ffnd | |- ( F e. B -> F Fn ( NN0 ^m 1o ) ) |
| 15 | 14 | 3ad2ant2 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> F Fn ( NN0 ^m 1o ) ) |
| 16 | 1 2 12 | ply1basf | |- ( G e. B -> G : ( NN0 ^m 1o ) --> ( Base ` R ) ) |
| 17 | 16 | ffnd | |- ( G e. B -> G Fn ( NN0 ^m 1o ) ) |
| 18 | 17 | 3ad2ant3 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> G Fn ( NN0 ^m 1o ) ) |
| 19 | df1o2 | |- 1o = { (/) } |
|
| 20 | nn0ex | |- NN0 e. _V |
|
| 21 | 0ex | |- (/) e. _V |
|
| 22 | eqid | |- ( a e. NN0 |-> ( 1o X. { a } ) ) = ( a e. NN0 |-> ( 1o X. { a } ) ) |
|
| 23 | 19 20 21 22 | mapsnf1o3 | |- ( a e. NN0 |-> ( 1o X. { a } ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) |
| 24 | f1of | |- ( ( a e. NN0 |-> ( 1o X. { a } ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) -> ( a e. NN0 |-> ( 1o X. { a } ) ) : NN0 --> ( NN0 ^m 1o ) ) |
|
| 25 | 23 24 | mp1i | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( a e. NN0 |-> ( 1o X. { a } ) ) : NN0 --> ( NN0 ^m 1o ) ) |
| 26 | ovexd | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( NN0 ^m 1o ) e. _V ) |
|
| 27 | 20 | a1i | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> NN0 e. _V ) |
| 28 | inidm | |- ( ( NN0 ^m 1o ) i^i ( NN0 ^m 1o ) ) = ( NN0 ^m 1o ) |
|
| 29 | 15 18 25 26 26 27 28 | ofco | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( ( F oF .+ G ) o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) = ( ( F o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) oF .+ ( G o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) ) |
| 30 | 11 29 | eqtrd | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( ( F .+b G ) o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) = ( ( F o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) oF .+ ( G o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) ) |
| 31 | 1 | ply1ring | |- ( R e. Ring -> Y e. Ring ) |
| 32 | 2 3 | ringacl | |- ( ( Y e. Ring /\ F e. B /\ G e. B ) -> ( F .+b G ) e. B ) |
| 33 | 31 32 | syl3an1 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( F .+b G ) e. B ) |
| 34 | eqid | |- ( coe1 ` ( F .+b G ) ) = ( coe1 ` ( F .+b G ) ) |
|
| 35 | 34 2 1 22 | coe1fval2 | |- ( ( F .+b G ) e. B -> ( coe1 ` ( F .+b G ) ) = ( ( F .+b G ) o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 36 | 33 35 | syl | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .+b G ) ) = ( ( F .+b G ) o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 37 | eqid | |- ( coe1 ` F ) = ( coe1 ` F ) |
|
| 38 | 37 2 1 22 | coe1fval2 | |- ( F e. B -> ( coe1 ` F ) = ( F o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 39 | 38 | 3ad2ant2 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` F ) = ( F o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 40 | eqid | |- ( coe1 ` G ) = ( coe1 ` G ) |
|
| 41 | 40 2 1 22 | coe1fval2 | |- ( G e. B -> ( coe1 ` G ) = ( G o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 42 | 41 | 3ad2ant3 | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` G ) = ( G o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) |
| 43 | 39 42 | oveq12d | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) = ( ( F o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) oF .+ ( G o. ( a e. NN0 |-> ( 1o X. { a } ) ) ) ) ) |
| 44 | 30 36 43 | 3eqtr4d | |- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .+b G ) ) = ( ( coe1 ` F ) oF .+ ( coe1 ` G ) ) ) |